Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21080155-8    https://doi.org/10.11896/cldb.21080155
  无机非金属及其复合材料 |
基于真实骨料的细观混凝土建模及数值模拟
张龙飞1, 谢浩2,3, 冯吉利1,*, 陈燕伟1
1 中国矿业大学(北京) 深部岩土力学与地下工程国家重点实验室,北京 100083
2 济南轨道交通集团有限公司,济南 250014
3 山东大学齐鲁交通学院,济南 250002
Meso-concrete Modeling and Numerical Simulation Based on Actual Aggregates
ZHANG Longfei1, XIE Hao2,3, FENG Jili1, *, CHEN Yanwei1
1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2 Jinan Rail Transit Group Co., Ltd., Jinan 250014, China
3 School of Qilu Transportation, Shandong University, Jinan 250002, China
下载:  全 文 ( PDF ) ( 55275KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于激光扫描技术获取真实骨料三维形状,进而构建骨料库,基于“点阵”思想提出了一种新的随机骨料投放算法,借助MATLAB编制了构建三维混凝土细观几何模型的骨料投放程序,所构建的细观模型能够反映混凝土内骨料真实形态、空间分布和级配等细观特征,对三维几何模型进行剖切,即可获得二维平面几何模型,对骨料体积分数为40%的卵石混凝土和骨料体积分数为30%、40%、50%的砾石混凝土典型切面内骨料的粗糙度、圆度和长细比分布特征进行统计分析。利用Python编写接口程序将上述二维切面几何信息导入到ABAQUS中进行网格划分,即可获得混凝土二维细观有限元模型,结合室内实验,基于内聚力模型的连续-非连续数值计算方法研究了不同骨料类型和骨料含量对混凝土单轴压缩破坏的影响规律。此外,该方法还可作为土石混合料、砾岩等具有随机分布特征的复合材料建模和力学性能研究的有效工具。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张龙飞
谢浩
冯吉利
陈燕伟
关键词:  激光扫描  骨料  混凝土细观模型  骨料投放算法  内聚力模型    
Abstract: The geometry information of actual aggregates can be obtained by laser scanner to build an aggregate library. Then based on the idea of ‘dot matrix' a new random aggregate placement algorithm is proposed, so that a 3D mesoscopic concrete model can be generated, which can truly reflect the shape, distribution and gradation of aggregates in concrete. Simplified 2D plane geometry model was conveniently obtained by cutting the 3D geometry model. The sections of pebble concrete with aggregate content of 40% and gravel concrete with aggregate content of 30%, 40% and 50% were made, and the roughness, roundness and elongation ratio of the aggregates in the sections were statistically analyzed. A script was written using Python to import 2D plane geometry information into ABAQUS for meshing. And a 2D finite element model of meso-concrete can be obtained. Combined with the laboratory experiments, the influence of aggregate type and aggregate content on the failure mechanism of concrete was studied by the finite element method with the cohesive zone model, under uniaxial compressions. Moreover, this method is also effective to study the mesoscale model of materials with random distribution characteristics such as soil-rock mixtures and conglomerates.
Key words:  laser scanning    aggregate    mesoscale concrete model    aggregate placement algorithm    cohesive zone model
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TU528  
基金资助: 国家重点研发计划(2016YFC0600901);国家自然科学基金(41172116;U1261212);深部岩土力学与地下工程国家重点实验室(北京)创新基金(SKLGDUEK202220)
通讯作者:  *冯吉利,中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室教授、博士研究生导师。1996年毕业于大连理工大学,获博士学位,2002年1月至2004年1月在瑞典马尔默大学学习进修。研究领域涉及材料变形局部化和多物理场耦合孔隙介质模型理论、氢致金属劣化数值模型、地下工程和高边坡工程的稳定性评价、矿山巷道支护技术与应用等。发表高水平论文100余篇,获得两项国家自然科学基金和国家973项目等课题资助。fjl@cuntb.edu.cn   
作者简介:  张龙飞,2017年6月毕业于河南理工大学,获得工学学士学位。现为中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室博士研究生,在冯吉利教授的指导下主要从事混凝土细观模型、有限元分析和工程力学等的相关研究。
引用本文:    
张龙飞, 谢浩, 冯吉利, 陈燕伟. 基于真实骨料的细观混凝土建模及数值模拟[J]. 材料导报, 2023, 37(10): 21080155-8.
ZHANG Longfei, XIE Hao, FENG Jili, CHEN Yanwei. Meso-concrete Modeling and Numerical Simulation Based on Actual Aggregates. Materials Reports, 2023, 37(10): 21080155-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080155  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21080155
1 Li J, Ren X D. Journal of Building Structures, 2014, 35(4), 20 (in Chinese).
李杰, 任晓丹. 建筑结构学报, 2014, 35(4), 20.
2 Liang S X, Li J. Engineering Mechanics, 2018, 35(2), 116 (in Chinese).
梁诗雪, 李杰. 工程力学, 2018, 35(2), 116.
3 Schlangen E, Van Mier J G M. International Journal of Damage Mecha-nics, 1992, 1(4), 435.
4 Zhou R X, Song Z H, Lu Y. Computers and Structures, 2017, 192, 96.
5 Huang Y J, Yang Z J, Ren W Y, et al. International Journal of Solids and Structures, 2015, 67, 340.
6 Ren W Y, Yang Z J, Sharma R, et al. Engineering Fracture Mechanics, 2015, 133, 24.
7 Xiong X Y, Xiao Q S. Journal of Hydraulic Engineering, 2019, 50(4), 448 (in Chinese).
熊学玉, 肖启晟. 水利学报, 2019, 50(4), 448.
8 Zhou Y L, Jin H, Wang B L. Construction and Building Materials, 2019, 228, 116785.
9 Yu B T, Liu T, Wang H, et al. Materials Reports, 2021, 35(14), 14058 (in Chinese).
于本田, 刘通, 王焕, 等. 材料导报, 2021, 35(14), 14058.
10 Du X Q, Zhang Z, Lou Z K, et al. Journal of Building Materials, 2020, 23(3), 603 (in Chinese).
杜向琴, 张臻, 娄宗科, 等. 建筑材料学报, 2020, 23(3), 603.
11 Zhu L, Dang F N, Ding W H, et al. China Civil Engineering Journal, 2020, 53(8), 97 (in Chinese).
朱琳, 党发宁, 丁卫华, 等. 土木工程学报, 2020, 53(8), 97.
12 Qin W, Du C B. Engineering Mechanics, 2012, 29(7), 186 (in Chinese).
秦武, 杜成斌. 工程力学, 2012, 29(7), 186.
13 Garboczi E J. Cement and Concrete Research, 2002, 32(10), 1621.
14 Trawinski W, Tejchman J, Bobinski J. Engineering Fracture Mechanics, 2018, 189, 27.
15 Li N, Zhao Y R, Materials Reports, 2021, 35(21), 21169 (in Chinese).
李娜, 赵燕茹. 材料导报, 2021, 35(21), 21169.
16 Li C H, Wang H L, Xu G X. Journal of Central South University (Science and Technology), 2011, 42(2), 463 (in Chinese).
李朝红, 王海龙, 徐光兴. 中南大学学报(自然科学版), 2011, 42(2), 463.
17 Yilmaz O, Molinari J F. Cement and Concrete Research, 2017, 97, 84.
18 Ma H F, Mi S Z, Chen H Q. Journal of China Institute of Water Resources and Hydropower Research, 2006(3), 196 (in Chinese).
马怀发, 芈书贞, 陈厚群. 中国水利水电科学研究院学报, 2006(3), 196.
19 Ma H F, Xu W X, Li Y C. Computers & Structures, 2016, 177, 103.
20 Ma H F, Song L Z, Xu W X. Computers and Structures, 2018, 209, 57.
21 Qin X G, Gu C S, Shao C F, et al. Construction and Building Materials, 2020, 253, 119184.
22 Yang Z J, Huang Y J, Yao F, et al. Engineering Mechanics, 2020, 37(8), 158 (in Chinese).
杨贞军, 黄宇劼, 尧锋, 等. 工程力学, 2020, 37(8), 158.
23 Xie H, Feng J L. Materials, 2019, 12(23), 3835.
24 Xie H. Study on failure process and mechanism of concrete with meso-structure based on cohesive zone model. Ph. D. Thesis, China University of Mining & Technology-Beijing, China, 2020 (in Chinese).
谢浩. 基于内聚力模型的细观混凝土破坏过程及机理研究. 博士学位论文, 中国矿业大学(北京), 2020.
25 Liu W L, Zhang X L, Wang S B. Journal of China Coal Society, 2020, 45(6), 1973 (in Chinese).
刘万里, 张学亮, 王世博. 煤炭学报, 2020, 45(6), 1973.
26 Sui S C, Zhu X S. Scientia Sinica(Technologica), 2020, 50(11), 1449 (in Chinese).
隋少春, 朱绪胜. 中国科学:技术科学, 2020, 50(11), 1449.
27 Xu W X, Chen H S. Computers and Structures, 2013, 114, 35.
28 Hong L, Gu X L. Influences of surface roughness and shape of coarse aggregates on mechanical properties of concrete, Tongji University Press, China, 2018 (in Chinese).
洪丽, 顾祥林. 骨料表面粗糙度及骨料形状对混凝土力学性能的影响, 同济大学出版社, 2018.
29 Dugdale D S. Journal of Mechanics and Physics of Solids, 1960, 8(2), 100.
30 Barenblatt G I. Advances in Applied Mechanics, 1962, 7(1), 55.
31 Han Y D, Zhang J, Wang Z B. Journal of Harbin Institute of Technology, 2013, 45(4), 84 (in Chinese).
韩宇栋, 张君, 王振波. 哈尔滨工业大学学报, 2013, 45(4), 84.
[1] 万文豪, 杨飞华, 王发洲, 张日红, 刘云鹏. 助熔成分对工程渣土烧制轻质陶粒性能的影响[J]. 材料导报, 2023, 37(7): 21120103-6.
[2] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[3] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[4] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[5] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[6] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[7] 盛鹰, 贾彬, 王汝恒, 陈国平. 基于内聚力模型的复合裂纹耦合扩展多尺度数值模拟研究与实验验证[J]. 材料导报, 2022, 36(4): 20110172-10.
[8] 冯春花, 黄益宏, 崔卜文, 朱建平, 李东旭, 郭晖. 建筑再生骨料强化方法研究进展[J]. 材料导报, 2022, 36(21): 20080099-8.
[9] 王建民, 肖自强, 范奕涛, 汪能君, 王万祯, 柳俊哲. 组合混凝土界面粘结性能多因素正交试验分析[J]. 材料导报, 2022, 36(2): 20100056-6.
[10] 李林坤, 刘琦, 黄天勇, 李扬, 彭勃. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 20100295-9.
[11] 魏冠奇, 王琰帅, 洪舒贤, 董必钦, 邢锋. 工程开挖土的资源化再利用研究进展[J]. 材料导报, 2022, 36(13): 20110138-9.
[12] 潘诗婷, 李凯, 张超慧, 史才军. 粗骨料形状对混凝土氯离子扩散性能影响的数值模拟研究[J]. 材料导报, 2022, 36(10): 21030145-9.
[13] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 20100189-6.
[14] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[15] 贺诚, 李庆超, 周涵, 李东旭. 石膏基地面轻质保温层材料的制备及性能研究[J]. 材料导报, 2021, 35(z2): 236-240.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed