Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23090081-9    https://doi.org/10.11896/cldb.23090081
  无机非金属及其复合材料 |
海水干湿循环作用下地聚物基珊瑚骨料混凝土力学性能的研究
张白1,2,*, 彭晖1, 杨致远2
1 长沙理工大学土木工程学院,湖南 长沙 410114
2 东南大学土木工程学院,江苏 南京 210096
Mechanical Properties of Geopolymer-based Coral Aggregate Concrete Under Dry-wet Cycles of Seawater
ZHANG Bai1,2,*, PENG Hui1, YANG Zhiyuan2
1 School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
2 School of Civil Engineering, Southeast University, Nanjing 210096, China
下载:  全 文 ( PDF ) ( 35233KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用远海岛礁地区可获得的海洋资源(如海水、海砂和废弃的珊瑚礁)制备海水珊瑚骨料混凝土(CAC),有助于缩短海洋工程项目的建造工期并降低建设成本。然而,珊瑚骨料的多孔和脆性特征影响着CAC及其结构的力学和耐久性能。本研究考虑使用低碳且耐腐蚀的矿渣-粉煤灰基地质聚合物替代普通硅酸盐水泥制备地聚物基海水珊瑚骨料混凝土(GPCAC),并开展了海水干湿循环作用下GPCAC力学及耐久性的研究,同时采用SEM、XRD等技术手段剖析海水环境作用后混凝土力学性能的损伤机理。研究表明:GPCAC在遭受腐蚀环境作用后表现出比CAC更为优异的抗海水侵蚀性。当试件处于45 ℃海水干湿循环环境作用12个月后,CAC立方体的抗压强度和弹性模量分别削减了9.7%和8.6%,而GPCAC弹性模量仅降低了6.2%,甚至其立方体抗压强度增长了5.9%。地聚物密实的微观结构、优良的孔结构以及稳定的水化产物是其抗海水侵蚀性能优于水泥基胶凝材料的原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张白
彭晖
杨致远
关键词:  地质聚合物  珊瑚骨料混凝土  力学性能  海水干湿循环  劣化机理    
Abstract: Seawater coral aggregate concrete (CAC), prepared with locally available marine resources (e.g. seawater, sea-sand, and wasted coral aggregates) on reef or island areas, is helpful to shorten construction period and reduce construction costs of offshore projects. However, the porosity and brittleness of coral aggregates will affect the mechanical properties and durability of CAC and CAC structures. In this work, low-carbon and well-durable geopolymers were used instead of ordinary Portland cement to prepare geopolymer-based seawater coral aggregate concrete (GPCAC), and it's mechanical properties and durability under seawater wet-dry cycles were explored, meanwhile the deterioration mechanism of the mechanical properties of the concrete was evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The results indicated that GPCAC exhibited better seawater erosion resistance than CAC after exposure to seawater dry-wet cycle environments. When subjected to 45 ℃ seawater conditions in wet-dry cycles for 12 months, the cubic compressive strength and elastic modulus of CAC were reduced by 9.7% and 8.6%, respectively, while the elastic modulus of GPCAC was only reduced by 6.2%, and even the cubic compressive strength of GPCAC increased by 5.9%. It was concluded that the dense microstructure, excellent pore structure, and stable hydration products of geopolymers are the reasons for their superior performance against seawater corrosion to cement-based materials.
Key words:  geopolymers    coral aggregate concrete (CAC)    mechanical performance    seawater drying-wetting cycles    deterioration mechanisms
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TU377  
基金资助: 湖南省自然科学基金(2024JJ6054);长沙市自然科学基金(kq2402026)
通讯作者:  * 张白,工学博士,讲师,硕士研究生导师。2022年9月毕业于东南大学土木工程学院。主要从事高性能地聚物海工混凝土及FRP增强构件耐久性研究;现已发表SCI/EI论文59篇;其中以第一/通信作者发表SCI论文31篇(JCR一区27篇),ESI高被引论文7篇。baizhang1120@csust.edu.cn   
引用本文:    
张白, 彭晖, 杨致远. 海水干湿循环作用下地聚物基珊瑚骨料混凝土力学性能的研究[J]. 材料导报, 2024, 38(23): 23090081-9.
ZHANG Bai, PENG Hui, YANG Zhiyuan. Mechanical Properties of Geopolymer-based Coral Aggregate Concrete Under Dry-wet Cycles of Seawater. Materials Reports, 2024, 38(23): 23090081-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090081  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23090081
1 Cao Y, Bao J, Zhang P, et al. Journal of Building Engineering, 2022, 60, 105199.
2 Wang A G, Lv B C, Liu K W, et al. Materials Reports, 2018, 32(10), 1528(in Chinese).
王爱国, 吕邦成, 刘开伟, 等. 材料导报, 2018, 32(10), 1528.
3 Yin S P, Hu C S, Liang X Z. Journal of Materials in Civil Engineering, 2020, 32, 04020282.
4 Zhou L L, Guo S C, Zhang Z H, et al. Journal of Cleaner Production, 2021, 289, 125652.
5 Zhang B, Zhu H, Dong Z, et al. Materials Today Communications, 2023, 35, 105656.
6 Wang A, Lyu B, Zhang Z, et al. Construction and Building Materials, 2018, 187, 1004.
7 Wang L, Mao Y, Lv H, et al. Construction and Building Materials, 2018, 162, 442.
8 Yu H, Da B, Ma H, et al. Construction and Building Materials, 2020, 246, 118390.
9 Niu D, Su L, Luo Y, et al. Construction and Building Materials, 2020, 237, 117628.
10 Cai X G, Zhao Q, Chen H S. Journal of the Chinese Ceramic Society. 2021, 49(8), 1(in Chinese).
蔡新光, 赵青, 陈惠苏. 硅酸盐学报, 2021, 49(8), 1.
11 Cheng S K, Shui Z H, Sun T, et al. Applied Clay Science, 2017, 141, 111.
12 Wu W, Wang R, Zhu C, et al. Construction and Building Materials, 2018, 185, 69.
13 Liu B, Guo J, Zhou J, et al. Construction and Building Materials, 2020, 249, 118771.
14 Xu W Y, Yang S T, Xu C J, et al. Construction and Building Materials, 2019, 223, 91.
15 Deng W Z, Zou M N, Wang Y. Journal of Building Structures, 2019, 40(1), 28(in Chinese).
郑文忠, 邹梦娜, 王英. 建筑结构学报, 2019, 40(1), 28.
16 Yang G, Zhao J, Wang Y. Materials Today Sustainability, 2022, 17, 100099.
17 Wang X M, Zhang Y, Zhao T J, et al. Materials Reports, 2018, 32(12), 2091(in Chinese).
万小梅, 张宇, 赵铁军, 等. 材料导报, 2018, 32(12), 2091.
18 Lyu BC, Guo L P, Ding C, et al. Materials Reports, 2023, 37(10), 21060226(in Chinese).
吕邦成, 郭丽萍, 丁聪, 等. 材料导报, 2023, 37(10), 21060226.
19 Shehata N, Sayed E T, Abdelkareem M A. Science of the Total Environment, 2021, 762, 143166.
20 Zhang B, Zhu H, Cheng Y Z, et al. Construction and Building Materials, 2022, 318, 125993.
21 Zhang B, Zhu H, Wang Q, et al. Journal of Sustainable Cement-Based Materials, 2022, 11, 187.
22 Zhang B, Zhu H, Li F Z, et al. Construction and Building Materials, 2021, 299, 123886.
23 Zhang B, Zhu H, Shah K W, et al. Construction and Building Materials, 2021, 284, 122805.
24 American Society for Testing and Materials. Standard practice for the preparation of substitute ocean water, ASTM D1141-98, 2013.
25 Ministry of Housing and Urban-Rural Development, People's Republic of China, Standard for test methods of concrete physical and mechanical pro-perties, China Building Industry Publishing, 2019 (in chinese).
中华人民共和国住房与城乡建设部. 混凝土物理力学性能试验方法标准, GB/T 50081-2019, 中国建筑工业出版社, 2019.
26 Özcan A, Karakoç M B. Structural Concrete, 2019, 20(5), 1607.
27 Shen B J. Study on the performance of alkali-activated slag cement under seawater corrosion. Master's Thesis, Xi'an University of Architecture and Technology, China, 2011(in Chinese).
沈宝镜. 碱激发矿渣水泥抗海水侵蚀性能的研究. 硕士学位论文, 西安建筑科技大学, 2011.
28 Wang A G, Zheng Y, Zhang Z H, et al. Engineering, 2020, 6(6), 695.
29 Provis J L. Cement and Concrete Research, 2018, 114, 40.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[15] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed