Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21050141-8    https://doi.org/10.11896/cldb.21050141
  无机非金属及其复合材料 |
三种热点工程颗粒材料的性质与环境行为和细胞毒性的关系
黄雪刚1, 刘洋1,*, 李博文1, 谭聪1, 谭春玲1, 宋兰2, 仇浩3
1 昆明理工大学环境科学与工程学院,云南省土壤固碳与污染控制重点实验室,昆明 650500
2 南方科技大学环境科学与工程学院,广东省土壤与地下水污染防控及修复重点实验室,广东 深圳 518055
3 上海交通大学环境科学与工程学院,上海 200240
Relationships Between the Properties of Three Hot Engineering Granular Materials and Their Environmental Behaviors or Cytotoxicity
HUANG Xuegang1, LIU Yang1,*, LI Bowen1, TAN Cong1, TAN Chunling1, SONG Lan2, QIU Hao3
1 Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 Faculty of Environmental Science and Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control and Remediation, Shenzhen 518055, Guangdong, China
3 School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 4602KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着科技的不断发展,涌现出许多新型颗粒材料,特别是纳米颗粒(Nanoparticles, NPs)、微塑料(Microplastics, MPs)和生物炭(Biochars, BCs)等。由于独特的物理化学性质,它们被广泛应用于生物医学、包装材料和污染治理等领域,但在其应用过程中的环境健康风险仍未得到全面理解,其表现出的细胞毒性作用及反应机制也逐渐成为国内外的研究热点。目前,研究中鲜见对这些新型颗粒材料的综合对比研究,但这几种材料均具有尺寸小、电荷密度高和溶出物质复杂等属性,这些共同属性不仅影响着它们的环境行为,且很大程度上影响着其对动植物和微生物细胞的毒性作用。因此,本文就NPs、MPs、BCs三种工程颗粒(Engineered particles, EPs)展开讨论,从EPs的粒径、表面电荷和溶出物质入手,建立EPs的自身性质与其吸附、聚集等环境行为的关系;同时,尝试探究和总结EPs的尺寸、表面电荷或溶出物质等对动植物或微生物细胞的毒性机制,并就EPs在目前细胞毒性研究中存在的问题进行分析并提出改进意见,为未来类似于EPs的颗粒型材料的风险评估提供理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄雪刚
刘洋
李博文
谭聪
谭春玲
宋兰
仇浩
关键词:  纳米颗粒  微塑料  生物炭  环境行为  细胞毒性    
Abstract: With the innovation inmaterial science and technology, many new particulate materials have emerged, including particularly nanoparticles (NPs), microplastics (MPs) and biochars (BCs). The unique physical and chemical properties of these materials allow them to be applied in a variety of fields, such as biomedicine, packaging and pollution control. To date, the potential risks of these emerging materials on human health have not yet been fully understood during the application process. Although their cytotoxicity effects and reaction mechanisms have gradually become research hotspots worldwide, few efforts have been put on comparing the health risks of these new particulate materials at pre-sent. The unique properties of these materials, such as small size, high charge density and complex dissolved substances, could not only affect their environmental behaviors, but largely affect their toxic mechanisms and effects on animals, plants and microbial cells. Therefore, the objective of the present article is to compare and discuss how the physical properties of NPs, MPs, and BCs, including particle size, surface charge and dissolution rate, influence their corresponding environmental behaviors in adsorption and aggregation. Subsequently, the toxicity mechanisms (e.g. particle size, surface charge and dissolved substances) of these particular materials on animals, plants and microbial cells were also explored and summarized in the present study. The potential research gaps were analyzed, based on which the suggestions for improvement were present to provide fundamental knowledge in carrying out the risk assessment of emerging materials with similar properties.
Key words:  nanoparticles    microplastics    biochars    environmental behavior    cytotoxicity
发布日期:  2023-03-27
ZTFLH:  X592  
基金资助: 国家自然科学基金(41967039);云南省万人计划青年拔尖项目(YNWR-QNBJ-2019-065);云南省基础研究专项面上项目(202001AT070042);昆明理工大学大学生创新创业训练计划项目(202010674057)
通讯作者:  *刘洋,昆明理工大学环境科学与工程学院副教授、硕士研究生导师。2009年7月本科毕业于中国农业大学,水利与土木工程学院农业建筑环境与能源工程系,2011年6月取得中国农业大学水利与土木工程学院农业建筑环境与能源工程系硕士学位,2015年在荷兰莱顿大学理学院环境科学系获得博士学位。2017年8月至今任职于昆明理工大学环境科学与工程学院环境科学系,2019年入选云南省“万人计划”。主要从事污染物生态毒性效应评价与预测、混合污染物毒性作用机理、纳米材料的环境行为及健康风险评价、天然有机质与污染物的相互作用、生物炭中自由基的生物效应方向的研究。近年来在环境科学领域发表文章38篇,包括Environmental Science & Technology、Environmental Pollution、Water Research、Chemosphere、Frontiers of Environmental Science & Engineering等国内外知名期刊。minipig6@163.com   
作者简介:  黄雪刚,2019年6月毕业于昆明理工大学,获得理学学士学位。现为昆明理工大学环境科学与工程学院硕士研究生,在刘洋副教授的指导下进行研究。目前主要研究领域为金属基纳米颗粒的颗粒态与溶解态的毒性贡献研究。
引用本文:    
黄雪刚, 刘洋, 李博文, 谭聪, 谭春玲, 宋兰, 仇浩. 三种热点工程颗粒材料的性质与环境行为和细胞毒性的关系[J]. 材料导报, 2023, 37(6): 21050141-8.
HUANG Xuegang, LIU Yang, LI Bowen, TAN Cong, TAN Chunling, SONG Lan, QIU Hao. Relationships Between the Properties of Three Hot Engineering Granular Materials and Their Environmental Behaviors or Cytotoxicity. Materials Reports, 2023, 37(6): 21050141-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050141  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21050141
1 Mueller N C, Nowack B. Environmental Science & Technology, 2008, 42(12), 4447.
2 Hernandez L M, Yousefi N, Tufenkji N. Environmental Science & Technology Letters, 2017, 4(7), 280.
3 Halle A T, Jeanneau L, Martignac M, et al. Environmental Science and Technology, 2017, 51(23), 13689.
4 Peterson S C, Jackson M A, Kim S, et al. Powder Technology, 2012, 228, 115.
5 Ma N L, Cheng Y, Zhang L L. Environmental Protection Science, 2018, 44 (6), 117 (in Chinese).
马乃龙, 程勇, 张利兰. 环境保护科学, 2018, 44(6), 117.
6 Wang Y Y. Catalytic application of biochar in hydrogenation and toxicity evaluation of biochar leachate. Master's Thesis, University of Science and Technology of China, China, 2016(in Chinese).
王苑樱. 生物炭的加氢催化应用及生物炭浸出液的毒性评估. 硕士学位论文, 中国科学技术大学, 2016.
7 Mcmahon H T, Gallop J L. Nature, 2005, 438(7068), 590.
8 Etxeberria E, Gonzalez P, Baroja-Fernandez E, et al. Plant Signaling & Behavior, 2006, 1(4), 196.
9 Fajardo C, Saccà M L, Martinez-Gomariz M, et al. Chemosphere, 2013, 93(6).
10 Diao M, Yao M. Water Research, 2009, 43(20), 5243.
11 Yuan S, Zhao L X, Meng H B, et al. Plant Nutrition and Fertilizer Science, 2016, 22 (5), 1402 (in Chinese).
袁帅, 赵立欣, 孟海波, 等. 植物营养与肥料学报, 2016, 22(5), 1402.
12 Sajid M, Potka-Wasylka J. Microchemical Journal, 2020, 154, 104623.
13 Wang Y L, Lee Y H, Chiu I J, et al. International Journal of Molecular Sciences, 2020, 21(5), 1727.
14 Liu Y P, Koopal L K, Li W, et al. Journal of Colloid & Interface Science, 2015, 451.
15 Song H, Luo X M, Zhang L, et al. Geoscience Frontiers, 2019, 26 (6), 19 (in Chinese).
宋欢, 罗锡明, 张莉, 等. 地学前缘, 2019, 26(6), 19.
16 Wang T T, Wang X L, Ren Z S, et al. Environmental Science and Technology, 2017, 40 (1), 42 (in Chinese).
王彤彤, 王晓琳, 任志胜, 等. 环境科学与技术,2017, 40(1), 42.
17 Rustad J R, Felmy A R. Geochimica et Cosmochimica Acta, 2005, 69(6), 1405.
18 Klüpfel L, Keiluweit M, Kleber M, et al. Environmental Science & Technology, 2014, 48(10), 5601.
19 Zhou Q, Zhang H, Zhou Y, et al. Science Bulletin, 2018, 63(2), 105 (in Chinese).
周倩, 章海波, 周阳, 等. 科学通报, 2018, 63(2), 105.
20 Yu X R, Wang J Y, Wang C P, et al. Fujian Journal of Agricultural Sciences, 2019, 34 (6), 739 (in Chinese).
于学茹, 王巨媛, 王翠苹, 等. 福建农业学报, 2019, 34(6), 739.
21 Lu C, Liu C, Su F. Desalination, 2009, 249(1), 18.
22 Rui H, Jiang X C, Twa B, et al. Chemical Engineering Journal, 2020, 379, 122388.
23 Zhang H, Wang J, Zhou B, et al. Environmental Pollution, 2018, 243, 1550.
24 Fotopoulou K N, Karapanagioti H K. Marine Environmental Research, 2012, 81, 70.
25 Dong X, Ma L Q, Li Y. Journal of Hazardous Materials, 2011, 190(1-3), 909.
26 Wang T T, Ma J B, Qu D, et al. Environmental Science, 2017, 38 (5), 2161 (in Chinese).
王彤彤, 马江波, 曲东, 等. 环境科学, 2017, 38(5), 2161.
27 Shao P H, Liang D H, Yang L M, et al. Journal of Hazardous Materials, 387.
28 Suttiponparnit K, Jiang J, Sahu M, et al. Nanoscale Research Letters, 2011, 6(1), 27.
29 Wang J, Liu X, Liu G, et al. Ecotoxicology and Environmental Safety, 2019, 173, 331.
30 Cwiertny D M, Handler R M, Schaefer M V, et al. Geochimica et Cosmochimica Acta, 2008, 72(5), 1365.
31 Yi P, Chen K L. Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(7), 3588.
32 Zhang R C, Zhang H B, Tu C, et al. Environmental Chemistry, 2014, 33 (11), 1821 (in Chinese).
张瑞昌, 章海波, 涂晨, 等. 环境化学, 2014, 33(11), 1821.
33 Chen M, Wang D, Yang F, et al. Environmental Pollution, 2017, 230, 540.
34 Lu S H, Zhu K R, Song W C, et al. Science of the Total Environment, 2018, 630, 951.
35 Ma X, Xin Y, Yan Q, et al. Water Air and Soil Pollution, 2020, 231(8), 387.
36 Wang Z, Li J, Zhao J, et al. Environmental Science & Technology, 2011, 45(14), 6032.
37 Xu P C, Ge W, Chai C, et al. Marine Pollution Bulletin, 2019, 145, 260.
38 Moore M N. Environment International, 2006, 32(8), 967.
39 Sabo-Attwood T, Unrine, J M,Stone J W, et al. Nanotoxicology, 2012, 6(4), 353.
40 Chithrani B D, Chan W C W, et al. Nano Letters, 2007, 7(6), 1542.
41 Zhang K, Wang Y, Mao J, et al. Environmental Pollution, 2020, 256, 113409. 1.
42 Zhao T, Tan L J, Huang W Q, et al. Environmental Pollution, 2019, 247, 883.
43 Chen G C, Ma C X, Mukherjee A, et al. Nanotoxicology, 2016, 10(9), 1243.
44 Conner S D, Schmid S L. Nature, 2003, 422(6927), 37.
45 Hussain S M, Hess K L, Gearhart J M, et al. Toxicology in Vitro, 2005, 19(7), 975.
46 Hong S, Bielinska A U, Mecke A, et al. Bioconjugate Chemistry, 2004, 15(4), 774.
47 Thill A, Zeyons O, Spalla O. Environmental Science & Technology, 2006, 40(19), 6151.
48 Bhattacharjee S, Ershov D, Islam M, et al. RSC Advances, 2014, 4(37), 19321.
49 Thibodeau M S, Charles G, Knecht D A, et al. Toxicological Sciences, 2004, 80(1), 34.
50 Sun X D, Yuan X Z, Jia Y B, et al. Nature Nanotechnology, 2020, 15(9), 755.
51 Gunawan C, Teoh W Y, Marquis C P, et al. ACS Nano, 2011, 5(9), 7214.
52 Macomber L, Imlay J A. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20), 8344.
53 Zheng Z X, Huang B X, Rui L, et al. Chinese Rare Earths, 2001(6), 27 (in Chinese).
郑志侠, 黄碧霞, 芮蕾, 等. 稀土, 2001(6), 27.
54 Guo S F. Effects of lanthanum(III) and terbium(III) on the activity and structure of horseradish peroxidase in vitro and in vivo. Master's Thesis, Jiangnan University, China, 2008(in Chinese).
郭绍芬. 镧(Ⅲ), 铽(Ⅲ)对体内外辣根过氧化物酶活性与结构的影响研究. 硕士学位论文, 江南大学, 2008.
55 Schultz A G, Ong K J, Maccormack T, et al. Environmental Science & Technology, 2012, 46(18), 10295.
56 Schwabe F, Schulin R, Limbach L K, et al. Chemosphere, 2013, 91(4), 512.
57 Sait S, Srensen L, Kubowicz S, et al. Environmental Pollution, 2021, 268, 115745.
58 Hamlin H J, Marciano K, Downs C A. Chemosphere, 2015, 139, 223.
59 Min A N, Liu F M, Yan B, et al. Asian Journal of Ecotoxicology, 2014, 9(1) 97 (in Chinese).
闵安娜, 刘锋明, 晏彪, 等. 生态毒理学报, 2014, 9(1), 97.
60 Anjum R, Krakat N, Reza M T, et al. Ecotoxicology and Environmental Safety, 2014, 107, 306.
61 Busch D, Stark A, Kammann C I, et al. Ecotoxicology & Environmental Safety, 2013, 97, 59.
62 Hilber I, Mayer P, Gouliarmou V, et al. Chemosphere, 2017, 174, 700.
[1] 祖丽呼玛尔·木沙江, 赵静, 肖鹏飞. 金属基纳米材料在过硫酸盐高级氧化工艺中的应用进展[J]. 材料导报, 2023, 37(4): 21040022-8.
[2] 赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
[3] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[4] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[5] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[6] 张壹霖, 腾凡, 高庆, 杨婷婷. 基于RAFT调控的聚合诱导自组装研究进展[J]. 材料导报, 2022, 36(Z1): 22030070-5.
[7] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[8] 李博文, 刘洋, 李宗霖, 齐佳敏, 谭聪, 何莹, 仇浩. 生物炭对土壤酶活性影响的机理研究进展[J]. 材料导报, 2022, 36(7): 20060202-6.
[9] 陈如冰, 胡永琴, 陈美珠, 安佳, 吕颖, 刘玉菲, 李东玲. 基于过氧化氢酶介导金纳米颗粒交联聚集的乙肝表面抗原可视化检测[J]. 材料导报, 2022, 36(5): 21020098-4.
[10] 李泽朕, 刘昊, 徐沛瑶, 陈洲江, 王士斌, 陈爱政. 超临界抗溶剂法制备金属氧化物纳米颗粒的研究进展[J]. 材料导报, 2022, 36(3): 20080184-6.
[11] 李太广, 黄大兴, 商红静, 谢波玮, 邹琪, 古宏伟, 丁发柱. 金属有机沉积法制备YBCO薄膜的研究进展[J]. 材料导报, 2022, 36(2): 20090054-11.
[12] 李静芝, 高志贤, 李双, 赵旭东, 秦英凯, 刘辉, 韩铁. 上转换纳米颗粒的发光机理、制备及生物应用进展[J]. 材料导报, 2022, 36(14): 20110168-11.
[13] 县涛, 高宇姝, 孙小锋, 邸丽景, 马俊, 周永杰. 修饰AuAg合金纳米颗粒对BiOBr纳米片光催化降解和还原性能的提高[J]. 材料导报, 2022, 36(13): 21010273-8.
[14] 龙广成, 杨恺, 程智清, 王慧慧, 石晔, 谢友均. 不同工艺制度下纳米颗粒对UHPC强度的影响[J]. 材料导报, 2022, 36(13): 21040093-6.
[15] 任高远, 苏宏久, 王树东. 纳米氧化硅制备的成核过程:Ⅰ.工艺条件的影响[J]. 材料导报, 2022, 36(11): 21040123-4.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed