Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 21020098-4    https://doi.org/10.11896/cldb.21020098
  金属与金属基复合材料 |
基于过氧化氢酶介导金纳米颗粒交联聚集的乙肝表面抗原可视化检测
陈如冰1, 胡永琴1,2, 陈美珠1, 安佳1,2, 吕颖1, 刘玉菲1,2, 李东玲1
1 重庆大学光电技术及系统教育部重点实验室,重庆 400044
2 重庆大学光电工程学院智能感知技术中心(CIST),重庆 400044
Naked-eye Detection of Hepatitis B Surface Antigen Based on Catalase-Mediated Crosslinking Aggregation of Gold Nanoparticles
CHEN Rubing1, HU Yongqin1,2, CHEN Meizhu1, AN Jia1,2, LYU Ying1, LIU Yufei1,2, LI Dongling1
1 Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
2 Center for Intelligent Sensing Technology (CIST), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 3065KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 开发高效、高灵敏度又适用于基层的简便、稳定、成本低的病毒标志物检测方法对病毒的早期诊断具有重要意义。本工作通过制备同时具有催化和特异性识别能力的双功能聚苯乙烯纳米球催化H2O2分解,剩余的H2O2通过交联剂诱导金纳米颗粒聚集,使溶液颜色从红色变为蓝色,实现对乙肝表面抗原的高效、高灵敏、高特异性可视化检测。肉眼检测限为0.5 ng/mL,借助酶标仪后的检测限为0.01 ng/mL。此外,HBsAg在血清中的回收率在88.17%~102.50%,相对标准偏差在2.01%~4.52%,表明所提出的免疫测定法适用于血清中的检测,在实际临床中具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈如冰
胡永琴
陈美珠
安佳
吕颖
刘玉菲
李东玲
关键词:  可视化检测  乙肝表面抗原  催化  金纳米颗粒  聚集    
Abstract: Developing efficient, highly sensitive, simple, stable, and low-cost virus markers detection productsfor local clinics is of great emphasis in the early diagnosis and treatment of the virus. In this paper, the bifunctional polystyrene nanospheres with both catalytic and specific recognition capabilities are prepared to catalyze the decomposition of H2O2, and the remaining H2O2 will induce the aggregation of gold nanoparticles through the crosslinking agents, which causes the color of the solution to change from red to blue, so as to achieve the high-efficiency, high-sensitivity and high-specificity naked-eye detection of hepatitis B surface antigen. The detection limit of the naked-eye was recorded as 0.5 ng/mL and the detection limit assisted with microplate reader is 0.01 ng/mL. In addition, the recovery rate of HBsAg in serum is between 88.17%—102.50%, and the relative standard deviation is between 2.01%—4.52%, indicating that the proposed immunoassay is suitable for the detection in serum and has great potential in actual clinical practice.
Key words:  naked-eye detection    hepatitis B surface antigen    catalysis    gold nanoparticles    aggregation
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  Q55  
基金资助: 中央高校基本科研业务费专项资金(2019CDQYGD020;2019CDCGGD304);国家重点研发开发项目(2016YFE0125200);国家自然 科学基金(61927818;62005030)
通讯作者:  Yufei.Liu@cqu.edu.cn; lidongling@cqu.edu.cn   
作者简介:  陈如冰,于2018年9月至2021年6月在重庆大学攻读仪器科学与技术专业学术硕士学位,主要从事生物传感器的研究。
刘玉菲,重庆大学光电工程学院教授,分别于2003年、2006年和2011年获得北京大学、中国科学院和赫瑞-瓦特大学(Heriot-Watt University)的物理学理学学士学位、微电子学和工程电子学硕士学位及电子工程博士学位,其研究重点为MEMS技术、先进传感技术及便携式诊断技术等。
李东玲,重庆大学光电工程学院高级工程师,主要从事新型微纳器件及特色加工工艺、智能感知技术的研究。
引用本文:    
陈如冰, 胡永琴, 陈美珠, 安佳, 吕颖, 刘玉菲, 李东玲. 基于过氧化氢酶介导金纳米颗粒交联聚集的乙肝表面抗原可视化检测[J]. 材料导报, 2022, 36(5): 21020098-4.
CHEN Rubing, HU Yongqin, CHEN Meizhu, AN Jia, LYU Ying, LIU Yufei, LI Dongling. Naked-eye Detection of Hepatitis B Surface Antigen Based on Catalase-Mediated Crosslinking Aggregation of Gold Nanoparticles. Materials Reports, 2022, 36(5): 21020098-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020098  或          http://www.mater-rep.com/CN/Y2022/V36/I5/21020098
1 Yamamoto Y, Saita T, Sogawa R, et al. Analytical Biochemistry,2019,571,14.
2 Franco-Martinez L, Tvarijonaviciute A, Martinez-Subiela S, et al. Ecological Indicators, 2019, 98, 634.
3 Ehsania M, Chaichi M J, Hosseini S N. Sensors and Actuators B Chemical, 2017, 247, 319.
4 Mandli J, Attar A, Ennaji M M, et al. Journal of Electroanalytical Chemistry, 2017, 799, 213.
5 Cordeiro M, Carlos F F, Pedrosa P, et al. Diagnostics,2016,6(4),43.
6 Hu J, Wang L, Li F, et al. Lab on a Chip, 2013, 13, 4352.
7 Kaminska A, Witkowska E, Winkler K, et al. Biosensors & Bioelectro-nics, 2015, 66, 461.
8 Kim D S, Kim Y T, Hong S B, et al. Sensors, 2016, 16(12), 2154.
9 Shourian M, Ghourchian H, Boutorabi M. Analytica Chimica Acta, 2015, 895,1.
10 Wu Y, Guo W, Peng W, et al. ACS Applied Materials & Interfaces, 2017, 9, 9369.
11 Xiong L H, He X, Xia J, et al. ACS Applied Materials & Interfaces, 2017, 9, 14691.
12 Bajpai A K, Shukla S K, Bhanu S, et al. Progress in Polymer Science, 2008, 33, 1088.
13 Sahiner N, Godbey W T, McPherson G L, et al. Colloid and Polymer Science, 2006, 284, 1121.
14 Lu Y, Mei Y, Drechsler M, et al. Angewandte Chemie-International Edition, 2006, 45, 813.
15 Tu C, Yang Y, Gao M. Nanotechnology, 2008, 19(10), 105601.
16 Zhan S, Hu J, Li Y, et al. Food Chemistry, 2021, 342, 128327.
17 Li N, Than A, Wang X, et al. ACS Nano, 2016, 10, 3622.
18 Frens G. Nature-Physical Science, 1973, 241, 20.
19 Xie H Y, Zuo C, Liu Y, et al. Small, 2005, 1, 506.
20 Chen R B, Hu Y Q, Chen M Z, et al. ACS Omega, 2021, 6, 9828.
21 van den Berg L M, Ribeiro C M S, Zijlstra-Willems E M, et al. Retrovi-rology, 2014, 11, 123.
22 Sabouri S, Ghourchian H, Shourian M, et al. Analytical Methods, 2014, 6, 5059.
23 Shen J, Zhou Y, Fu F, et al. Talanta, 2015, 142, 145.
[1] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[2] 张玉金, 杨琦, 张瑞, 高宇新, 拜永孝. 硅胶载体的制备及在聚烯烃催化剂领域中的应用[J]. 材料导报, 2024, 38(1): 22040363-11.
[3] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[4] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[5] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[6] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[7] 胡思, 李梦瑶, 许飞红, 张敏, 吴琼, 张咚咚. 刺激响应型聚集在纳米粒子中的应用[J]. 材料导报, 2023, 37(S1): 23040323-8.
[8] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[9] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[10] 周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
[11] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[12] 郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
[13] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[14] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[15] 宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed