Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23040323-8    https://doi.org/10.11896/cldb.23040323
  高分子与聚合物基复合材料 |
刺激响应型聚集在纳米粒子中的应用
胡思, 李梦瑶, 许飞红, 张敏, 吴琼, 张咚咚*
粮食储藏与安全教育部工程研究中心,河南工业大学粮食和物资储备学院,郑州 450001
Application of Stimuli-responsive Aggregation in Nanoparticles
HU Si, LI Mengyao, XU Feihong, ZHANG Min, WU Qiong, ZHANG Dongdong*
Grain Storage and Security Engineering Research Center of Education Ministry, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 23459KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在过往的一些纳米颗粒应用研究中,关注较多的是如何将纳米颗粒均匀分散在悬浮液中来制备粒径小且均匀的纳米颗粒,并将其应用于检测、医疗等领域。而近些年,纳米颗粒的刺激响应型聚集逐渐成为纳米材料研究的热点,刺激响应型聚集可以实现纳米颗粒在特定条件下由分散状态转变成为聚集沉淀的状态,在检测上实现显色应用,在医疗上实现靶向治疗应用。此外,通过聚集纳米颗粒的再分散、再悬浮,可实现纳米颗粒的多次、反复应用。同时,在一些纳米颗粒的智能自组装领域(智能材料),也有越来越多的研究关注于纳米颗粒的刺激响应型聚集(自组装)。针对这些特性,本文综述了纳米颗粒在pH值、温度、光、磁场以及复合刺激等条件下聚集沉淀的方法、应用及效果,揭示这些刺激响应型沉淀的原理,简单介绍了刺激响应型纳米颗粒的应用,并展望了其未来的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡思
李梦瑶
许飞红
张敏
吴琼
张咚咚
关键词:  纳米粒子  刺激响应型  聚集  沉淀    
Abstract: In the past research on the application of nanoparticles, more attention has been paid to the uniform dispersion of nanoparticles in the suspension to realize the small and uniform particle size, which has a good effect in the fields of detection, medical treatment and so on. In recent years, the stimuli-responsive aggregation of nanoparticles has gradually become a hot spot. It can realize the transformation of nanoparticles from dispersion to aggregation under specific conditions, realize color development application in detection and targete treatment application in medical treatment. There are some studies could realize the redispersion and resuspension of aggregated nanoparticles, so as to realize the repeated application of nanoparticles. Meanwhile, in the field of intelligent self-assembly of nanoparticles (smart materials), more and more studies focus on the stimuli-responsive aggregation (self-assembly) of nanoparticles, too. In this paper, the methods, applications and effects of aggregation of nanoparticles are reviewed, which under the conditions of pH, temperature, light, magnetic field and compound stimulation. Meanwhile, the principles of these stimuli-responsive aggregations are revealed, the application of stimulus responsive nanoparticles are also briefly introduced, and their future development prospects are prospected.
Key words:  nanoparticle    stimuli-responsive    aggregation    precipitation
发布日期:  2023-09-06
ZTFLH:  O65  
  O611.4  
  TP212.3  
基金资助: 国家自然科学基金(32001745);中国科协第五届青年人才托举工程项目(2019QNRC001);河南省级科技研发计划联合基金(科技攻关类)(222103810081)
通讯作者:  *张咚咚,河南工业大学粮食和物资储备学院副教授、硕士研究生导师。2011年周口师范学院生物工程专业本科毕业,2013年大连工业大学生物工程专业硕士毕业,2018年天津科技大学食品科学专业博士毕业。目前主要从事纳米抑菌材料、粮油安全储藏等方面的研究工作。近年来主持国家、省部级等科研项目7项,授权中国发明/实用新型专利8项,发表SCI论文20余篇。mezhangdong@hotmail.com   
作者简介:  胡思,河南工业大学硕士研究生,研究方向为氧化锌纳米复合物对玉米储藏过程中微生物的抑制。
引用本文:    
胡思, 李梦瑶, 许飞红, 张敏, 吴琼, 张咚咚. 刺激响应型聚集在纳米粒子中的应用[J]. 材料导报, 2023, 37(S1): 23040323-8.
HU Si, LI Mengyao, XU Feihong, ZHANG Min, WU Qiong, ZHANG Dongdong. Application of Stimuli-responsive Aggregation in Nanoparticles. Materials Reports, 2023, 37(S1): 23040323-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040323  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23040323
1 Raha S, Ahmaruzzaman M. Nanoscale Advances, 2022, 4(8), 1868.
2 Mat'átková O, Michailidu J, Miškovská A, et al. Biotechnology Advances, 2022, 58, 107905.
3 Chen X, Song L, Li X, et al. Chemical Engineering Journal, 2020, 389, 124416.
4 Hatai J, Hirschháuser C, Niemeyer J, et al. ACS Applied Materials & Interfaces, 2020, 12(2), 2107.
5 Liu M, Yang M, Wan X, et al. Advanced Materials, DOI:10. 1002/adma. 202208995, 2208995.
6 Tudu B K, Gupta V, Kumar A, et al. Journal of Colloid And Interface Science, 2020, 566, 183.
7 Johnson L, Gray D M, Niezabitowska E, et al. Nanoscale, 2021, 13(17), 7879.
8 Rasheed T, Adeel M, Nabeel F, et al. Science of the Total Environment, 2019, 688, 299.
9 Song L, Zhao B, Ju X, et al. Materials Science in Semiconductor Proces-sing, 2020, 111, 104986.
10 Tummino M L, Testa M L, Malandrino M, et al. Nanomaterials, 2019, 9, 162.
11 Li L, Yang W W, Xu D G. Journal of Drug Targeting, 2019, 27(4), 423.
12 Zhang D D, Liu J M, Liu Y Y, et al. Progress in Chemistry, 2018, 30(12), 1908 (in Chinese).
张咚咚, 刘敬民, 刘瑶瑶, 等. 化学进展, 2018, 30(12), 1908.
13 Grzelczak M, Liz-Marzán L M, Klajn R. Chemical Society Reviews, 2019, 48(5), 1342.
14 Ghorbani M, Hamishehkar H. Materials Science and Engineering:C, 2018, 92, 599.
15 Shah A, Malik M S, Khan G S, et al. Chemical Engineering Journal, 2018, 353, 559.
16 Deirram N, Kermaniyan S S, Johnston A P R, et al. Australian Journal of Chemistry, 2021, 74(7), 514.
17 Engel S, Möller N, Stricker L, et al. Small, 2018, 14(16), 1704287.
18 Astray G, Mejuto J C, Simal-Gandara J. Food Hydrocolloids, 2020, 106, 105882.
19 Huang H, Wang J, Xu Y, et al. Applied Catalysis A:General, 2020, 594, 117463.
20 Sharifi M, Hosseinali S H, Yousefvand P, et al. Materials Science and Engineering:C, 2020, 108, 110422.
21 Morita-Imura C, Zama K, Imura Y, et al. Langmuir, 2016, 32(27), 6948.
22 Domenici F, Guazzelli E, Masotti E, et al. Macromolecular Chemistry and Physics, 2021, 222(5), 2000447.
23 Bardajee G R, Khamooshi N, Nasri S, et al. International Journal of Biological Macromolecules, 2020, 153, 180.
24 Yan J, Li M, Wang Z, et al. Chemical Engineering Journal, 2020, 389, 123468.
25 Ohnsorg M L, Ting J M, Jones S D, et al. Polymer Chemistry, 2019, 10(25), 3469.
26 Cai Z X, Zhang B, Jiang L Y, et al. Progress in Chemistry, 2019, 31(12), 1653 (in Chinese).
蔡紫煊, 张斌, 姜丽阳, 等. 化学进展, 2019, 31(12), 1653.
27 Hogan K J, Mikos A G. Polymer, 2020, 211, 123063.
28 Fernández-Quiroz D, Loya-Duarte J, Silva-Campa E, et al. Journal of Applied Polymer Science, 2019, 136(32), 47831.
29 Pham S H, Choi Y, Choi J. Pharmaceutics, 2020, 12(7), 630.
30 Abdollahi A, Roghani-Mamaqani H, Razavi B, et al. Polymer Chemistry, 2019, 10(42), 5686.
31 Wang Z Y, Zhang H, Yang Y, et al. Drug Delivery, 2016, 23(4), 1222.
32 Chen S, Sun B, Miao H, et al. ACS Materials Letters, 2020, 2(2), 174.
33 Wang J, Peled T S, Klajn R. Journal of the American Chemical Society, 2023, 145(7), 4098.
34 Abdollahi A, Sahandi-Zangabad K, Roghani-Mamaqani H. Langmuir, 2018, 34(46), 13910.
35 Pang J, Gao Z, Tan H, et al. Frontiers in Chemistry, 2019, 7, 620.
36 Raimondo C, Reinders F, Soydaner U, et al. Chemical Communications, 2010, 46(7), 1147.
37 Zhang Y, Ng M, Hong E Y H, et al. Journal of Materials Chemistry C, 2020, 8(39), 13676.
38 Ke K, Du Z, Chang X, et al. Colloid and Polymer Science, 2017, 295(10), 1851.
39 Rapp T L, Deforest C A. Advanced Drug Delivery Reviews, 2021, 171, 94.
40 Li F, Li T, Cao W, et al. Biomaterials, 2017, 133, 208.
41 Wang X, Liu X, Xiao C, et al. Microporous and Mesoporous Materials, 2020, 297, 110041.
42 Zhang D D, Liu J M, Sun S M, et al. Journal of Agricultural and Food Chemistry, 2019, 67(24), 6874.
43 Liu J M, Zhang D D, Fang G Z, et al. Biomaterials, 2018, 165, 39.
44 Nasiri S S, Salami-Kalajahi M, Roghani-Mamaqani H, et al. Inorganica Chimica Acta, 2018, 476, 83.
45 Resende G, Dutra G V S, Neta M S B, et al. Polymers, 2020, 12(12), 2868.
46 Ma Z, Zhao D, Chang Y, et al. Dalton Transactions, 2013, 42(39), 14261.
47 Sarmphim P, Jantaratana P, Sirisathitkul C. Journal of Nanomaterials, 2018, 2018, 3248051.
48 Liu B W, Zhou H, Zhou S T, et al. Macromolecules, 2014, 47(9), 2938.
49 Chen S, Guo C X, Zhao Q, et al. Chemistry—A European Journal, 2014, 20(43), 14057.
50 Yong H W, Kakkar A. Polymer International, 2022, 71(5), 514.
51 Fan W, Tong X, Farnia F, et al. Chemistry of Materials, 2017, 29(13), 5693.
52 Guo X, Song T, Chen D, et al. ACS Applied Materials & Interfaces, 2023, 15(2), 3543.
53 Nezhadghaffar-Borhani E, Abdollahi A, Roghani-Mamaqani H, et al. Journal of Colloid and Interface Science, 2021, 593, 67.
54 Wang Y, Feng L, Zhu H, et al. ACS Applied Nano Materials, 2021, 4(4), 3780.
55 Liu D, Chen W, Sun K, et al. Angewandte Chemie International Edition, 2011, 50(18), 4103.
56 Yuan X Q, Zhang Y Q, Li Z Y, et al. Chinese Journal of Chemistry, 2021, 39(3), 729.
57 Guan X, Yan S, Hou D, et al. Chemical Physics Letters, 2019, 714, 11.
58 Yang Z, Fu K, Yu J, et al. Polymers for Advanced Technologies, 2018, 29(8), 2273.
59 Jing X, Zhi Z, Jin L, et al. Nanoscale, 2019, 11(19), 9457.
60 Wang J, Wu B, Li S, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(15), 2450.
61 Qi A, Deng L, Liu X, et al. Journal of Biomedical Nanotechnology, 2017, 13(11), 1386.
62 Wang Y, Yan J, Wen N, et al. Biomaterials, 2020, 230, 119619.
63 Wells C M, Harris M, Choi L, et al. Journal of Functional Biomaterials, 2019, 10(3), 34.
64 Raza A, Rasheed T, Nabeel F, et al. Molecules, 2019, 24(6), 1117.
65 Yang Z, Song J, Tang W, et al. Theranostics, 2019, 9(2), 526.
66 Town A R, Giardiello M, Gurjar R, et al. Nanoscale, 2017, 9(19), 6302.
67 Lei L, Xie D, Song B, et al. Langmuir, 2017, 33(32), 7908.
68 Li Y, Zhu L, Wang B, et al. ACS Applied Materials & Interfaces, 2018, 10(33), 27831.
69 Chakraborty S, Kitchens C L. The Journal of Physical Chemistry C, 2019, 123(43), 26450.
70 Li Y, Hu J, Niu C, et al. Nanotechnology, 2018, 29(22), 225501.
71 Mazuel F, Mathieu S, Di Corato R, et al. Small, 2017, 13(31), 1701274.
72 Town A, Niezabitowska E, Kavanagh J, et al. The Journal of Physical Chemistry B, 2019, 123(29), 6303.
73 Mohsen R, Vine G J, Majcen N, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 428, 53.
74 Cheng C A, Deng T, Lin F C, et al. Theranostics, 2019, 9(11), 3341.
75 Krause S, Bon V, Stoeck U, et al. Angewandte Chemie International Edition, 2017, 56(36), 10676.
76 Paulus A S, Heinzler R, Ooi H W, et al. ACS Applied Materials & Interfaces, 2015, 7(26), 14279.
[1] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[2] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[3] 周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
[4] 张理元, 阳金菊, 尤佳. 以PVP为软模板构建的层状介孔TiO2及其光催化性能[J]. 材料导报, 2023, 37(4): 21080004-6.
[5] 秦肖雲, 邵文龙, 田宽, 姜利英, 罗聃. 纳米粒子自组装超结构的制备及基于构效关系的性能[J]. 材料导报, 2023, 37(17): 21120161-12.
[6] 余春秀, 王云凯, 贺子娟, 李玮, 陈家林, 李世鸿, 李俊鹏. 电子封装用环氧胶粘剂改性研究进展[J]. 材料导报, 2023, 37(15): 21120084-10.
[7] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[8] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[9] 陈如冰, 胡永琴, 陈美珠, 安佳, 吕颖, 刘玉菲, 李东玲. 基于过氧化氢酶介导金纳米颗粒交联聚集的乙肝表面抗原可视化检测[J]. 材料导报, 2022, 36(5): 21020098-4.
[10] 万中伊欣, 刘东青, 余金山. 日间辐射制冷材料研究进展[J]. 材料导报, 2022, 36(3): 20100091-9.
[11] 白曦, 方伟, 常若斌, 于浩洋, 闫皎辉, 殷福星. 沉淀强化高熵合金研究进展[J]. 材料导报, 2022, 36(21): 20070199-7.
[12] 何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高. 双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究[J]. 材料导报, 2022, 36(20): 21060093-6.
[13] 彭博, 凌天清, 葛豪. 纳米粒子改性橡胶沥青抗老化性能研究[J]. 材料导报, 2022, 36(20): 22090054-8.
[14] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[15] 唐滋励, 夏浚淞, 尹航, 傅光辉, 艾细彤, 唐海龙. 熔盐辅助制备钛酸锶钡纳米粉体及其介电性能[J]. 材料导报, 2022, 36(11): 21010142-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed