Abstract: Chemodynamic therapy is a novel method, which uses a Fenton catalyst to catalyze intracellular hydrogen peroxide into hydroxyl radicals to kill cancer cells. However, the low level of intracellular H2O2 in tumor cells and the limitations of monotherapy limit the effective treatment performance. Here we report a kind of copper peroxide-loaded mesoporous silica nanoparticle (MSN) in which doxorubicin (DOX) was loaded into the pores, then CuO2 catalyst was coated on the surface of MSN to prevent the premature of drug release. Under the stimulus of the tumor microenvironment (TME), CuO2 was decomposed to produce hydrogen peroxide(H2O2) and the Fenton-like ion Cu2+. Then, Cu2+ consumed the intracellular glutathione (GSH) to produce Cu+, which catalyzed H2O2 to produce the highly cytotoxic ·OH. Meanwhile, the successful delivery of DOX from MSN realizes the integration of chemodynamic therapy and chemotherapy. In addition, the experiments in vitro showed that this Fenton catalyst DOX@MSN@CuO2 exhibits good cytocompatibility and excellent cytotoxicity, which provides a new strategy for tumor treatment.
通讯作者: *唐昭敏,西南石油大学新能源与材料学院讲师、博士、硕士研究生导师。主要从事新型功能纳米材料在抗肿瘤方面的研究。作为课题组负责人主持国家自然科学基金青年基金,以第一作者及通信作者在Biomaterials、Advanced Healthcare Materials、Acta Biomaterialia、Separation and Purification、Microporous and Mesoporous Materials、Molecular Pharmaceutics、European Journal of Pharmaceutics and Biopharmaceutics等高水平期刊上发表多篇SCI论文。tl8687@163.com
引用本文:
唐昭敏, 江舒婷, 王郁东, 唐婉兰, 舒娟, 张骥阳, 何浩洋, 陈孔军. 负载过氧化铜的介孔二氧化硅纳米粒子协同化学动力学疗法和化疗联合治疗肿瘤[J]. 材料导报, 2023, 37(21): 22050131-5.
TANG Zhaomin, JIANG Shuting, WANG Yudong, TANG Wanlan, SHU Juan, ZHANG Jiyang, HE Haoyang, CHEN Kongjun. Copper Peroxide Coated Mesoporous Silica Nanoparticles for Tumor Treatment by the Combination of Chemodynamic Therapy and Chemotherapy. Materials Reports, 2023, 37(21): 22050131-5.
1 Ferlay J, Soerjomataram I, Dikshit R, et al. International Journal of Cancer, 2015, 136, 359. 2 Holohan C, Van Schaeybroeck S, Longley D, et al. Nature Reviews Cancer, 2013, 13(10), 714. 3 Huang P, Wang W, Zhou J, et al. ACS Applied Materials Interfaces, 2015, 7(11), 6340. 4 Kuczynski E, Sargent D, Grothey A, et al. Clinical Oncology, 2013, 10(10), 571. 5 Sun L Y, Zhu J Q, Yang T. JAMA Surgery, 2022, 157(1), 82. 6 Tang Z M, Liu Y Y, He M Y, et al. Angewandte Chemie, 2019, 131(4), 958. 7 Ranji-Burachaloo H, Gurr P A, Dunstan D E, et al. ACS Nano, 2018, 12(12), 11819. 8 Fan J X, Peng M Y, Wang H, et al. Advanced Materials, 2019, 31(16), 1808278. 9 Ma B J, Wang S, Liu F, et al. Journal of the American Chemical Society, 2019, 141(2), 849. 10 Li X S, Lee D Y, Huang J D, et al. Angewandte Chemie International Edition, 2018, 57(31), 9885. 11 Chen H C, Tian J W, He W J, et al. Journal of the American Chemical Society, 2015, 137(4), 1539. 12 Yang N, Xiao W Y, Song X J, et al. Nano-Micro Letters, 2020, 12(1), 15. 13 Zhang M, Song R X, Liu Y Y, et al. Chem, 2019, 5(8), 2171. 14 Ma P A, Xiao H H, Yu C, et al. Nano Letters, 2017, 17(2), 928. 15 Liu C, Wang D, Zhang S, et al. ACS Nano, 2019, 13(4), 4267. 16 Forman H J, Zhang H, Rinna A. Molecular Aspects of Medicine, 2009, 30(1-2), 1. 17 Ortega A L, Mena S, Estrela J M. Cancers, 2011, 3(1), 1285. 18 Huo M F, Wang L Y, Chen Y, et al. Nature Communications, 2017, 8(1), 357. 19 Lin L S, Song J B, Song L, et al. Angewandte Chemie International Edition, 2018, 130 (18), 4996. 20 Lin L S, Huang T, Song J, et al. Journal of the American Chemical Society, 2019, 141 (25), 9937. 21 Gao J B, Wang F, Wang S H, et al. Advanced Science, 2020, 7(11), 1903642. 22 Gao J, Feng S S, Guo Y J. Nanomedicine, 2012, 7(4), 465. 23 Ling D S, Park W, Park S J, et al. Journal of the American Chemical Society, 2014, 136(15), 5647.