Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22060208-11    https://doi.org/10.11896/cldb.22060208
  高分子与聚合物基复合材料 |
纳米流体的制备、稳定性及热物性研究进展
江巍雪1,2,†,*, 汤新宇1,†, 宋金蔚1, 徐祚1, 张源1
1 扬州大学电气与能源动力工程学院,江苏 扬州 225100
2 西部绿色建筑国家重点实验室,西安 710055
Research Progress on Preparation, Stability and Thermophysical Properties of Nanofluid
JIANG Weixue1,2,†,*, TANG Xinyu1,†, SONG Jinwei1, XU Zuo1, ZHANG Yuan1
1 School of Electrical and Energy Power Engineering, Yangzhou University, Yangzhou 225100, Jiangsu, China
2 State Key Laboratory of Green Building in Western China, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 12081KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一类新型固液两相流体,纳米流体相比于基础流体,其导热系数、表面张力等热物性的优势已逐渐被认可。然而,纳米颗粒的高表面活性以及颗粒间的高吸引力使纳米颗粒极易团聚并沉淀,导致纳米流体的热物性优势被削弱,进而影响传热效果。因此,制备既具优良热物性又具较强稳定性的纳米流体成为将其规模化应用的前提。为此,本文对纳米流体的制备、稳定性与热物性进行了总结分析,归纳了通过磁力搅拌、调节基液pH、超声分散技术、颗粒表面改性技术及添加表面活性剂以促进颗粒的稳定分散的技术特点。通过分析各类参数对纳米流体热物性的影响,指出解决颗粒团聚与沉淀问题的有效研究方向,以期满足纳米流体实际应用的需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江巍雪
汤新宇
宋金蔚
徐祚
张源
关键词:  纳米流体  制备  稳定性  团聚与沉淀  热物性    
Abstract: As a new type of solid-liquid two-phase fluid, nanofluid has been gradually recognized for its advantages in thermophysical properties such as thermal conductivity and surface tension compared with base fluid. Due to the high surface activity of nanoparticles and the high attraction between nanoparticles, nanoparticles are prone to agglomeration and sedimentation, which will weaken the thermophysical property advantages of nanofluid and thus affect the heat transfer efficiency. Therefore, the preparation of nanofluid with excellent thermal properties and strong stability has become the premise of its large-scale applications. To this end, the preparation, stability and thermophysical properties of nanofluid are summarized and analyzed in this paper. Also, the technical characteristics of promoting the dispersion stability of nanoparticles by magnetic stirring, adjusting the pH of the base fluid, ultrasonic dispersion technology, particle surface modification technology and adding surfactant are summarized. By analyzing the influence of various parameters on the thermophysical properties of nanofluid, the effective research direction to solve the problem of particle agglomeration and precipitation is pointed out, to finally meet the needs of the practical application of nanofluid.
Key words:  nanofluid    preparation    stability    agglomeration and precipitation    thermalphysical property
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TK121  
基金资助: 西部绿色建筑国家重点实验室开放基金(LSKF202319)
通讯作者:  *江巍雪,2014 年 6 月、2019 年 9 月分别于上海理工大学和东南大学获得工学学士学位和博士学位。现为扬州大学电气与能源动力工程学院讲师,从事建环专业教学工作。目前主要研究领域为纳米流体、吸收式制冷和低品位热能的利用,发表论文 10 余篇,包括Energy Reports、Powder Technology、International Journal of Refrigeration等,申请与获授权专利多项。jiangweixue@yzu.edu.cn   
作者简介:  汤新宇,现为扬州大学电气与能源动力工程学院研究生,在江巍雪老师的指导下进行研究。目前主要研究领域为纳米流体、吸收式制冷和低品位热能的利用。†共同第一作者
引用本文:    
江巍雪, 汤新宇, 宋金蔚, 徐祚, 张源. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 22060208-11.
JIANG Weixue, TANG Xinyu, SONG Jinwei, XU Zuo, ZHANG Yuan. Research Progress on Preparation, Stability and Thermophysical Properties of Nanofluid. Materials Reports, 2024, 38(4): 22060208-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060208  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22060208
1 Jang S P, Choi S U S. Applied Physics Letters, 2004, 84(21),4316.
2 Okonkwo E C, Wole-Osho I, Almanassra I W, et al. Journal of Thermal Analysis and Calorimetry, 2021, 145(6), 2817.
3 Yang L, Ji W, Zhang Z, et al. International Communications in Heat and Mass Transfer, 2019, 109, 104353.
4 Jiang W, Du K, Li Y, et al. International Journal of Refrigeration, 2017, 82, 189.
5 Song J, Jiang W, Qian H, et al. Powder Technology, 2020, 369, 311.
6 Al-Waeli A H A, Chaichan M T, Kazem H A, et al. Case Studies in Thermal Engineering, 2019, 13, 100392.
7 Zafarani-Moattar M T, Majdan-Cegincara R. Fluid Phase Equilibria, 2013, 354, 102.
8 Choi M, Choi W K, Jung C H, et al. Scientific Reports, 2020, 10(1), 1.
9 Hashimoto S, Kurazono K, Yamauchi T. International Journal of Heat and Mass Transfer, 2020, 150, 119302.
10 Sati P, Shende R C, Ramaprabhu S. Thermochimica Acta, 2018, 666, 75.
11 Suganthi K S, Vinodhan V L, Rajan K S. Applied Energy, 2014, 135, 548.
12 Huang X G. Experimental study on boiling heat transfer of nanofluid, Master’s Thesis, Jiangsu University of Science and Technology, China, 2017 (in Chinese).
黄晓干. 纳米流体沸腾换热实验研究. 硕士学位论文, 江苏科技大学, 2017
13 Minakov A V, Rudyak V Y, Pryazhnikov M I. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 279.
14 Yang L, Du K, Bao S, et al. International Journal of Refrigeration, 2012, 35(8), 2248.
15 Barreneche C, Mondragon R, Ventura-Espinosa D, et al. Applied Thermal Engineering, 2018, 128, 121.
16 Liu C, Yan Y, Sun W, et al. Journal of Molecular Liquids, 2022, 356, 119020.
17 Zhu H T, Lin Y S, Yin Y S. Journal of Colloid & Interface Science, 2004, 277(1), 100.
18 Bönnemann H, Botha S S, Bladergroen B, et al. Applied Organometallic Chemistry, 2010, 19(6), 768.
19 Lee G J, Kim C K, Lee M K, et al. Thermochimica Acta, 2012, 542, 24.
20 Mohammadpoor M, Sabbaghi S, Zerafat M M, et al. International Journal of Refrigeration, 2019, 99, 243.
21 Ma B, Shin D, Banerjee D. Journal of Energy Storage, 2021, 35, 102278.
22 Yang L, Du K, Niu X, et al. International Journal of Refrigeration, 2011, 34(8), 1741.
23 Wang X Q, Mujumdar A S. Brazilian Journal of Chemical Engineering, 2008, 25(4), 631.
24 Asadi A, Alarifi I M, Ali V, et al. Ultrasonics Sonochemistry, 2019, 58, 104639.
25 Chen W, Zou C, Li X. Solar Energy Materials and Solar Cells, 2019, 200, 109931.
26 Yang L, Huang J, Ji W, et al. Powder Technology, 2020, 360, 956.
27 Missana T, Adell A. Journal of Colloid and Interface Science, 2000, 230(1), 150.
28 Popa I, Gillies G, Papastavrou G, et al. The Journal of Physical Chemistry B, 2010, 114(9), 3170.
29 Dey D, Kumar P, Samantaray S. Heat Transfer—Asian Research, 2017, 46(8), 1413.
30 Zhou L, Ma H H, Ma S X, et al. Materials Reports, 2018, 32(15), 2576(in Chinese).
周璐, 马红和, 马素霞, 等. 材料导报, 2018, 32(15), 2576.
31 Paul G, Philip J, Raj B, et al. International Journal of Heat & Mass Transfer, 2011, 54(15-16), 3783.
32 Botha S S, Ndungu P, Bladergroen B J. Industrial & Engineering Che-mistry Research, 2011, 50(6), 3071.
33 Cacua K, Murshed S M, Pabón E, et al. Journal of Thermal Analysis and Calorimetry, 2020, 140(1), 109.
34 Chung S J, Leonard J P, Nettleship I, et al. Powder Technology, 2009, 194(1-2), 75.
35 Hafizi A, Rajabzadeh M, Khalifeh R. Journal of Environmental Chemical Engineering, 2020, 8(4), 103845.
36 Li F, Li L, Zhong G, et al. International Journal of Heat and Mass Transfer, 2019, 129, 278.
37 Zheng N, Wang L, Sun Z. Ultrasonics Sonochemistry, 2021, 80, 105816.
38 Tajik B, Abbassi A, Saffar-Avval M, et al. Powder Technology, 2012, 217, 171.
39 Zhang H, Qing S, Zhai Y, et al. Powder Technology, 2021, 377, 748.
40 Li D, Dai Y, Chen X, et al. Journal of Molecular Liquids, 2022, 354, 118848.
41 Kamalgharibi M, Hormozi F, Zamzamian S A H, et al. Heat and Mass transfer, 2016, 52(1), 55.
42 Zareei M, Yoozbashizadeh H, Madaah Hosseini H R. Journal of Thermal Analysis and Calorimetry, 2019, 135(2), 1185.
43 Katiyar A, Harikrishnan A R, Dhar P. Colloid and Polymer Science, 2017, 295(9), 1575.
44 Cacua K, Ordoñez F, Zapata C, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123960.
45 Al-Waeli A H A, Chaichan M T, Kazem H A, et al. Case Studies in Thermal Engineering, 2019, 13, 100392.
46 Assael M J, Metaxa I N, Arvanitidis J, et al. International Journal of Thermophysics, 2005, 26(3), 647.
47 Saterlie M, Sahin H, Kavlicoglu B, et al. Nanoscale Research Letters, 2011, 6(1), 1.
48 Chakraborty S, Sarkar I, Behera D K, et al. Powder Technology, 2017, 307, 10.
49 Kashiwagi T. Newsletter IEA Heat Pupm Center, 1988, 6(4), 2.
50 Das P K, Islam N, Santra A K, et al. Journal of Molecular Liquids, 2017, 237, 304.
51 Li X, Chen Y, Mo S P, et al. Journal of Chemical Industry, 2013, 64(9), 3324 (in Chinese).
李兴, 陈颖, 莫松平, 等. 化工学报, 2013, 64(9), 3324.
52 Gao T, Li C, Zhang Y, et al. Tribology International, 2019, 131, 51.
53 Yang L, Du K, Niu X, et al. International Journal of Refrigeration, 2011, 34(8), 1741.
54 Yang L, Jiang W, Chen X, et al. International Journal of Refrigeration, 2017, 82, 366.
55 Yang Z, Yao Y P, Li Y, et al. Journal of Chemical Industry, 2022, 73(3), 1093 (in Chinese).
杨振, 姚元鹏, 李昀, 等. 化工学报, 2022, 73(3), 1093.
56 Yang L, Du K, Bao S, et al. International Journal of Refrigeration, 2012, 35(8), 2248.
57 Michael M, Zagabathuni A, Ghosh S, et al. Journal of Thermal Analysis and Calorimetry, 2019, 137(2), 369.
58 Zhu N, Ji H, Yu P, et al. Nanomaterials, 2018, 8(10), 810.
59 Jouyandeh M, Karami Z, Ali J A, et al. Progress in Organic Coatings, 2019, 136, 105250.
60 Kora M, Ani Z, Tasi M, et al. Journal of the Serbian Chemical So-ciety, 2007, 72(11), 1115.
61 Li X, Xiong J, Xu Y, et al. Chinese Journal of Catalysis, 2019, 40(3), 424.
62 Sundar L S, Singh M K, Ramana E V, et al. Scientific Reports, 2014, 4(1), 1.
63 Zhai Y, Li L, Wang J, et al. Powder Technology, 2019, 343, 215.
64 Angayarkanni S A, Philip J. Journal of Nanofluids, 2014, 3(1), 17.
65 Elomaa O, Oksanen J, Hakala T J, et al. Tribology International, 2014, 71, 62.
66 Huminic A, Huminic G, Fleaca C, et al. Powder Technology, 2015, 284, 78.
67 Haghtalab A, Mohammadi M, Fakhroueian Z. Fluid Phase Equilibria, 2015, 392, 33.
68 Raki E, Afrand M, Abdollahi A. International Journal of Heat and Mass Transfer, 2021, 165, 120669.
69 Pang C, Jung J Y, Lee J W, et al. International Journal of Heat and Mass Transfer, 2012, 55(21-22), 5597.
70 Ghadimi A, Metselaar I H. Experimental Thermal and Fluid Science, 2013, 51, 1.
71 Etedali S, Afrand M, Abdollahi A. International Journal of Thermal Sciences, 2019, 145, 105977.
72 Suganthi K S, Rajan K S. International Journal of Heat and Mass Transfer, 2012, 55(25-26), 7969.
73 Kamalgharibi M, Hormozi F, Zamzamian S A H, et al. Heat and Mass transfer, 2016, 52(1), 55.
74 Jiang W, Ding G, Peng H, et al. Current Applied Physics, 2010, 10(3), 934.
75 Hong J, Kim D. Thermochimica Acta, 2012, 542, 28.
76 Bao L, Zhong C, Jie P, et al. Advances in Mechanical Engineering, 2019, 11(11), 1687814019889486.
77 Song S L, Lee J H, Chang S H. Experimental Thermal and Fluid Science, 2014, 52, 12.
78 Ham J, Kim H, Shin Y, et al. International Journal of Thermal Sciences, 2017, 114, 86.
79 Liu C D, Wang D M, Quan X J, et al. Journal of Power Engineering, 2018, 38(7), 572 (in Chinese).
刘藏丹, 王东民, 全晓军, 等. 动力工程学报, 2018, 38(7), 572.
80 Barewar S D, Tawri S, Chougule S S. Journal of Thermal Analysis and Calorimetry, 2020, 139(3), 1779.
81 Zhang J Y, Liu S, Sun W N, et al. Materials Reports, 2016, 30(S2), 160 (in Chinese).
张景胤, 刘石, 孙伟娜, 等. 材料导报, 2016, 30(S2), 160.
82 Teng T P, Hung Y H, Teng T C, et al. Applied Thermal Engineering, 2010, 30(14-15), 2213.
83 Cui W, Bai M, Lv J, et al. Industrial & Engineering Chemistry Research, 2011, 50(23), 13568.
84 Bhanushali S, Jason N N, Ghosh P, et al. ACS Applied Materials & Interfaces, 2017, 9(22), 18925.
85 Rashmi W, Ismail A F, Sopyan I, et al. Journal of Experimental Nanoscience, 2011, 6(6), 567.
86 Altun A, Şara O N, Şimşek B. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127099.
87 Nawi M R M, Rehim M Z A, Azmi W H, et al. International Journal of Refrigeration, 2018, 88, 275.
88 Nguyen C T, Desgranges F, Galanis N, et al. International Journal of Thermal Sciences, 2008, 47(2), 103.
89 Yu L, Bian Y N, Liu Y, et al. Materials Reports, 2020, 34(22), 22010 (in Chinese).
于丽, 卞永宁, 刘杨, 等. 材料导报, 2020, 34(22), 22010.
90 Kedzierski M A, Brignoli R, Quine K T, et al. International Journal of Refrigeration, 2017, 74, 3.
91 Lu G, Duan Y Y, Wang X D. Journal of Nanoparticle Research, 2014, 16(9), 1.
92 Jeong J, Li C, Kwon Y, et al. International Journal of Refrigeration, 2013, 36(8), 2233.
93 Xuan Y, Li Q, Tie P. Experimental Thermal and Fluid Science, 2013, 46, 259.
94 Chakraborty S, Sarkar I, Behera D K, et al. Powder Technology, 2017, 307, 10.
95 Cabaleiro D, Estellé P, Navas H, et al. Journal of Nanofluids, 2018, 7(6), 1081.
96 Harikrishnan A R, Dhar P, Agnihotri P K, et al. The European Physical Journal E, 2017, 40(5), 1.
97 Wang G, Dong P, Lu Y, et al. International Communications in Heat and Mass Transfer, 2021, 123, 105231.
98 Kumar R, Milanova D. Applied Physics Letters, 2009, 94(7), 073107.
99 Chakraborty S, Sarkar I, Behera D K, et al. Powder Technology, 2017, 307, 10.
[1] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[2] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[3] 王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
[4] 杨强, 刘洪新, 何端鹏, 陈海峰, 陈维强, 金晶, 潘福明. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 22080244-8.
[5] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[6] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[7] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[8] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[9] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[10] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[11] 杨春利, 黄江龙, 杜晶, 陈喜, 张浩, 王靖. In、Ta共掺杂Ni-BaCeO3基氢分离膜[J]. 材料导报, 2023, 37(6): 21090258-8.
[12] 吕春艳, 刘杨, 张文君, 王晴. 基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究[J]. 材料导报, 2023, 37(6): 21030015-6.
[13] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[14] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[15] 孙富丽, 张炜, 俞一帆, 盛殷笑, 庄桂林. 二氧化铈负载型催化剂的研究进展[J]. 材料导报, 2023, 37(3): 22120058-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed