Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21030015-6    https://doi.org/10.11896/cldb.21030015
  无机非金属及其复合材料 |
基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究
吕春艳1,2,3, 刘杨1,3, 张文君1,2,3,*, 王晴1,3
1 哈尔滨商业大学药学院,哈尔滨 150076
2 抗肿瘤天然药物教育部工程研究中心, 哈尔滨 150076
3 黑龙江省预防与治疗老年性疾病药物研究重点实验室,哈尔滨 150076
Preparation and Gastrointestinal Stability of Nimodipine Drug Delivery System Based on Silica Aerogel
LYU Chunyan1,2,3, LIU Yang1,3, ZHANG Wenjun1,2,3,*, WANG Qing1,3
1 School of Pharmaciutical Science,Harbin University of Commerce, Harbin 150076, China
2 Engineering Research Center of Natural Anti-cancer Drugs, Ministry of Education, Harbin 150076, China
3 Heilongjiang Key Laboratory of Preventive and Therapeutic Drug Research of Senile Diseases, Harbin 150076, China
下载:  全 文 ( PDF ) ( 4567KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 尼莫地平可有效治疗心脑血管病,但是其具有溶解度低、稳定性差等不足,极大地限制了它的开发与利用。如何有效提高尼莫地平的溶解度、稳定性是当前亟待解决的问题。本研究旨在构建一种硅气凝胶包载尼莫地平的新型递药系统,并通过X-射线衍射、N2吸附-脱附、热重等对载药前后的硅气凝胶进行表征分析,探究其释药性能及胃肠稳定性。结果表明,以硅气凝胶为载体制备的新型递药系统,负载药物后其骨架结构未被破坏且载药量高达31.24%;与原料药相比,其体外胃、肠液中的释放速度显著提高;同时,经过硅气凝胶负载的尼莫地平在胃、大肠、小肠的内容物中可存留4 h,稳定性显著提高。构建的新型递药系统具有良好的释药性能和胃肠稳定性,为尼莫地平口服制剂的进一步开发提供了新的选择和数据基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕春艳
刘杨
张文君
王晴
关键词:  硅气凝胶  尼莫地平  释药性能  递药系统  稳定性    
Abstract: Nimodipine is an effective drug for the treatment of cardiovascular and cerebrovascular diseases. However, its low solubility and poor stability greatly limit its development and utilization. Thus it becomes an urgent problem of how to effectively improve the solubility and stability of nimodipine. The purpose of this study was to construct a novel drug delivery system consisting of nimodipine coated with silicon aerogel. In order to explore its drug release properties and gastrointestinal stability, the silicon aerogels before and after drug loading were characterized and analyzed by X-ray diffraction, N2 adsorption-desorption and thermogravimetric techniques. The results showed that the drug loading capacity of the new drug delivery system based on silicon aerogel was up to 31.24%, and the skeleton structure of the system was not damaged after drug loading. Compared with nimodipine, the new drug delivery system significantly improved the release rate of nimodipine in gastric and intestinal fluid in vitro. At the same time, nimodipine loaded by silica aerogel could be retained in stomach, large intestine and small intestine for 4 h, and its stability was significantly improved. The new drug delivery system has good drug release performance and gastrointestinal stability, which provides a new choice and data basis for further development of nimodipine oral preparation.
Key words:  silica aerogel    nimodipine    drug release performance    drug delivery system    stability
发布日期:  2023-03-27
ZTFLH:  TQ4  
基金资助: 2019 年度哈尔滨商业大学“青年创新人才”支持计划项目(2019CX41;2019CX12);国家级大学生创新创业训练计划项目(202010240019);哈尔滨商业大学本科教学领军人才培养计划项目(201902);哈尔滨商业大学博士科研启动金(13DL023)
通讯作者:  *张文君,哈尔滨商业大学药学院副教授、硕士研究生导师。2005年、2008年、2011年分别于黑龙江中医药大学中药学专业本科、黑龙江中医药大学药剂学专业硕士、沈阳药科大学中药制剂学专业博士毕业,2016—2019年在南京医科大学从事博士后研究工作。主要研究新型药物传输系统,发表论文40余篇。wenjun0501@126.com   
作者简介:  吕春艳,哈尔滨商业大学药学院副教授、硕士研究生导师。2007年、2012年分别于牡丹江师范学院化学专业本科、吉林大学无机化学专业博士毕业,2013—2018年在黑龙江中医药大学中药学博士后流动站从事博士后研究工作。主要研究纳米药物载体材料的制备及新型药物传输系统,发表论文30余篇。
引用本文:    
吕春艳, 刘杨, 张文君, 王晴. 基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究[J]. 材料导报, 2023, 37(6): 21030015-6.
LYU Chunyan, LIU Yang, ZHANG Wenjun, WANG Qing. Preparation and Gastrointestinal Stability of Nimodipine Drug Delivery System Based on Silica Aerogel. Materials Reports, 2023, 37(6): 21030015-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030015  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21030015
1 Hajizadeh Barfejani A, Rabinstein A A, Wijdicks E F M, et al. Journal of Stroke and Cerebrovascular Diseases, 2019, 28(8), 2155.
2 James C L, Turnbull M T, Freeman W D. Pharmacogenomics, 2020, 21(6), 387.
3 Lei W, Si W, Hao Q, et al. Sensors and Actuators B: Chemical, 2015, 212, 207.
4 Carlson A P, Hänggi D, Macdonald R L, et al. Current Neuropharmacology, 2020, 18(1), 65.
5 Mahmoud S H, Ji X, Isse F A. Drugs in R&D, 2020, 20(4), 307.
6 Lin C C, Xia Z H, Yang F. Journal of International Pharmaceutical Research, 2017, 44(6), 518(in Chinese).
林翠翠, 夏自花, 杨帆. 国际药学研究杂志, 2017, 44(6), 518.
7 Li Y, Wei Z P. Chinese Journal of Pharmaceuticals, 2017, 48(4), 589(in Chinese).
李瑶, 魏振平. 中国医药工业杂志, 2017, 48(4), 589.
8 Lu Z J, Liu Y. Chinese Journal of Modern Applied Pharmacy, 2018, 35(12), 1786(in Chinese).
陆振举, 刘怡. 中国现代应用药学, 2018, 35(12), 1786.
9 Bhatt-Mehta V, Hammoud H, Amidon G L. European Journal of Pharmaceutical Sciences, 2020, 152, 165.
10 Plöger G F, Hofsäss M A, Dressman J B. Journal of Pharmaceutical Sciences, 2018, 107(6), 1478.
11 Li H, Li H, Wei C, et al. European Journal of Pharmaceutical Sciences, 2018, 117, 321.
12 Huo T T, Tao C, Zhang M J, et al. Chinese Journal of New Drugs, 2017, 26(19), 2291(in Chinese).
霍涛涛, 陶春, 张美敬, 等. 中国新药杂志, 2017, 26(19), 2291.
13 Zhang H J, An Y T, Liang Y, et al. Chinese Journal of Experimental Traditional Medical Formulae, 2019, 25(21), 196(in Chinese).
张慧杰, 安雅婷, 梁颖, 等. 中国实验方剂学杂志, 2019, 25(21), 196.
14 Pahuja R, Seth K, Shukla A, et al. ACS Nano, 2015, 9(5), 4850.
15 Bharadwaj V N, Nguyen D T, Kodibagkar V D, et al. Advanced Healthcare Materials, 2018, 7, 1.
16 Shilo M, Motiei M, Hana P, et al. Nanoscale, 2014, 6(4), 2146.
17 Gannimani R, Walvekar P, Naidu V R, et al. Journal of Controlled Release, 2020, 328, 736.
18 Shao J, Fang Y, Zhao R, et al. Asian Journal of Pharmaceutical Sciences, 2020, 15(6), 685.
19 Marziyeh A, Fariborz K, Reza A, et al. DARU Journal of Pharmaceutical Sciences, 2020, 28(2), 423.
20 Gao W, Hu C J, Fang R H, et al. Journal of Materials Chemistry. B, 2013, 1(48), 6569.
21 He Y, Shao L, Hu Y, et al. Ceramics International, 2021, 47(4), 4572.
22 Cao X, Yu J N, Xu X M. Pharmaceutical Biotechnology, 2008, 15(4), 313(in Chinese).
曹霞, 余江南, 徐希明. 药物生物技术, 2008, 15(4), 313.
23 Charman W N, Chan H K, Finnin B C, et al. Drug Development Research, 2015, 46(3-4), 316.
24 Amonette J E, Matyáš J. Microporous and Mesoporous Materials, 2017, 250, 100.
25 Koebel M, Rigacci A, Achard P. Journal of Sol-Gel Science and Techno-logy, 2012, 63(3), 315.
26 Stergar J, Maver U. Journal of Sol-Gel Science and Technology, 2016, 77(3), 738.
27 Gao R, Zhou Z J, Zhang H B, et al. Inorganic Chemicals Industry, 2019, 51(9), 50(in Chinese).
高睿, 周张健, 张宏博, 等. 无机盐工业, 2019, 51(9), 50.
28 Miu Y J, Li L, Miu Y C, et al. China Measurement & Test, 2020, 46(5), 51(in Chinese).
缪应菊, 李琳, 缪应纯, 等. 中国测试, 2020, 46(5), 51.
29 Li S N, Wang J R, Zhang J Q, et al. Chinese Traditional and Herbal Drugs, 2017, 48(13), 2638(in Chinese).
李胜男, 王计瑞, 张继琼, 等. 中草药, 2017, 48(13), 2638.
30 Chinese Pharmacopoeia Commission. Pharmacopoeia of the people's republic of China, four bibliographic categories, China Medical Science and Technology Press, China, 2020, pp. 132.
国家药典委员会. 中华人民共和国药典, 四部, 中国医药科技出版社, 2020, pp. 132.
[1] 杨春利, 黄江龙, 杜晶, 陈喜, 张浩, 王靖. In、Ta共掺杂Ni-BaCeO3基氢分离膜[J]. 材料导报, 2023, 37(6): 21090258-8.
[2] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[3] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[4] 乔及森, 杨元庄, 王磊, 高振云, 冯睿. 焊剂片约束电弧焊接三明治板熔滴过渡与熔池波动研究[J]. 材料导报, 2023, 37(2): 21050032-8.
[5] 聂真, 褚万立, 聂伟志, 陈煜. 含碘敷料的研究进展与应用现状[J]. 材料导报, 2023, 37(2): 20090021-7.
[6] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[7] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[8] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[9] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[10] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[11] 范海峰, 郭志光. 仿生超滑表面的设计与制备研究进展[J]. 材料导报, 2022, 36(7): 21110226-21.
[12] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[13] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[14] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[15] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed