Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 21110226-21    https://doi.org/10.11896/cldb.21110226
  表面工程材料与技术 |
仿生超滑表面的设计与制备研究进展
范海峰1, 郭志光1,2
1 湖北大学材料科学与工程学院,武汉 430062
2 中国科学院兰州化学物理研究所固体润滑国家重点实验室,兰州 730000
Progress on the Design and Preparation of Bioinspired Slippery Surface
FAN Haifeng1, GUO Zhiguang1,2
1 School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
2 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 16760KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 受自然界中猪笼草的启发,通过在粗糙结构中灌注稳定的低表面能液体,替代超疏水表面粗糙结构中的空气层,形成稳定连续的润滑油层,制备了注液超滑表面。由于润滑油层具有较低的表面自由能,许多液滴在其表面滑动阻力小,难以浸润和黏附在表面。基于超滑表面的这些特性,它们在防腐蚀、防冰冻霜冻、自清洁、抑菌以及防微生物黏附等方面具有广阔的应用前景。但是,由于润滑油具有流体特性,表面在实际使用过程中会面临润滑油损失问题,最终导致超滑表面性能失效。因此,提高超滑表面的稳定性、耐久性对其实际应用具有重要意义。近年来,为了减少超滑表面润滑油的损失,研究人员从超滑表面的设计制备出发,在粗糙结构的构筑、修饰剂和润滑油的选择等方面进行了大量的研究,并取得了丰硕的成果。本文从液体灌注超滑表面、固体超滑表面的设计和制备方面出发,详细综述了如何设计制备稳定性好的超滑表面,以延长超滑表面的使用寿命。首先,简要介绍了超滑表面的设计原则,从液体灌注超滑表面的设计和制备角度,详细综述了粗糙结构、修饰剂以及润滑油性能对超滑表面稳定性的影响。然后,总结了固体超滑表面的设计、制备方法及面临的问题。最后,对超滑表面的前景进行了展望,以期为制备稳定性和耐久性好的超滑表面提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范海峰
郭志光
关键词:  超滑表面  润滑油损失  稳定性  粗糙结构  润滑油选择    
Abstract: Inspired by the Nepenthes pitcher in nature, the slippery liquid-infused porous surfaces (SLIPS) are prepared by injecting the low surface energy liquids into the rough substrate, forming a stable and continuous solid/liquid composite film, which isolates the substrate from direct contact with the ambient fluid. Due the low surface energy of the lubricating oil layer, various liquids with different surface tensions slide on the slippery surface with little resistance, and it is difficult to infiltrate and adhere to the surface. Based on these characteristics, the slippery surfaces have a wide range of applications in anti-corrosion, anti-icing/anti-frosting, self-cleaning, antibacterial, anti-microbial adhesion and so on. However, due to the fluid characteristics of the lubricating oil, the slippery surfaces will inevitably face the problem of lubricating oil loss in practical applications, eventually leading to the failure of slippery performance. Therefore, it is of great significance to improve the stability and durability of slippery surface. In recent years, in order to reduce the loss of lubricating oil, a lot of research about the construction of rough structure, selection of modifiers and lubricating oil have been done from the design and preparation of slippery surface, which have achieved fruitful results. In this review, we mainly focus on how to design and prepare slippery surface with good stability and durability to prolong the longevity of slippery surface. Firstly, the design principles of slippery surfaces are introduced briefly. Then, the effects of rough structure, the properties of modifier and lubricating oil on the stability of slippery surface are reviewed in detail from the design and preparation of liquid-infused slippery surface. After that, the preparation process of solid slippery surface is summarized as well as the problems faced. Finally, the development prospects are reviewed in the hope that the review will provide reference for the preparation of slippery surface with excellent stability and durability.
Key words:  slippery surface    lubricating oil loss    stability    rough structure    lubricating oil selection
发布日期:  2022-04-07
ZTFLH:  TH14  
基金资助: 国家自然科学基金(51735013)
通讯作者:  zguo@licp.cas.cn   
作者简介:  范海峰,2017年6月、2021年6月分别于湖北大学获得工学学士学位和硕士学位。硕士期间主要研究方向为多功能超滑表面的设计制备及性能。现为武汉大学动力与机械学院的博士研究生,主要研究领域为CO2催化转化。
郭志光,湖北大学材料科学与工程学院教授、博士研究生导师,院长,“万人计划”领军人才。目前主要从事仿生摩擦学研究。发表论文360余篇,包括Chemical Society ReviewsJournal of the American Chemical SocietyAdvanced Materials和《摩擦学学报》等,SCI引用13 000多次,影响因子60。出版中英文专著各1部,授权中国发明专利30余件。
引用本文:    
范海峰, 郭志光. 仿生超滑表面的设计与制备研究进展[J]. 材料导报, 2022, 36(7): 21110226-21.
FAN Haifeng, GUO Zhiguang. Progress on the Design and Preparation of Bioinspired Slippery Surface. Materials Reports, 2022, 36(7): 21110226-21.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110226  或          http://www.mater-rep.com/CN/Y2022/V36/I7/21110226
1 Barthlott W, Neinhuis C. Planta, 1997, 202, 1.
2 Neinhuis C, Barthlott W. Annals of Botany, 1997, 79, 667.
3 Feng L, Li S, Li Y, et al. Advanced Materials, 2002, 14, 24.
4 Feng L, Li S H, Li H J, et al. Angewandate Chemie-International Edition, 2002, 41(7), 1269.
5 Li M, Zhai J, Liu H, et al. The Journal of Physical Chemistry B, 2003, 107, 9954.
6 Ren S, Yang S, Zhao Y, et al. Surface Science, 2003, 546, 64.
7 Hozumi A, Takai O. Thin Solid Films, 1997, 303 (1-2), 222.
8 Zeng Q, Zhou H, Huang J, et al. Nanoscale, 2021, 13, 11734.
9 Hwang B G, Page K, Patir A. ACS Nano, 2018, 12(6), 6050.
10 Wang S, Liu K, Yao X, et al. Chemical Reviews, 2015, 115, 8230.
11 Bohn H F, Federle W. PNAS, 2004, 101(39), 14138.
12 Wong T, Kang S H, Tang S K Y, et al. Nature, 2011, 477(7365), 443.
13 Howell C, Vu T L, Lin J J, et al. ACS Applied Materials & Interfaces, 2014, 6(15), 13299.
14 Solomon B, Khalil K S, Varanasi K K,Langmuir, 2014, 30(36), 10970.
15 Wang Y, Zhang H, Liu X, et al. Journal of Materials Chemistry A, 2016, 4, 2524.
16 Manabe K, Kyung K H, Shiratori S. ACS Applied Materials & Interfaces, 2015, 7(8), 4763.
17 Mana U, Lynn D M. Advanced Materials, 2015, 27(19), 3007.
18 Wang J, Kato K, Blois A P, et al. ACS Applied Materials & Interfaces, 2016, 8(12), 8265.
19 Rowthu S, Hoffmann P. ACS Applied Materials & Interfaces, 2018, 10(12), 10560.
20 Wong W S Y, Hegner K I, Donadei V, et al. Nano Letters, 2020, 20(12), 8508.
21 Liu C, Li Y, Lu C, et al. ACS Applied Materials & Interfaces, 2020, 12, 25471.
22 Long Y, Yin X, Mu P, et al. Chemical Engineering Journal, 2020, 401, 126137.
23 Zhang H, Chen G, Yu Y, et al. Advanced Sciences, 2020, 7(16), 2000789.
24 Chen T, Lin Y, Chien C, et al. Advanced Functional Materials, 2021, 32(42), 2104173.
25 Luo X, Lai H, Cheng Z, et al. Chemical Engineering Journal, 2021, 403, 126356.
26 Maji K, Das A, Dhar M, et al. Journal of Materials Chemistry A, 2020, 8, 25040.
27 Villegas M, Zhang Y, Jarad N A, et al. ACS Nano, 2019, 12(8), 8517.
28 Li J, Ueda E, Paulssen D, et al. Advanced Functional Materials, 2019, 29, 1802317.
29 Sett S, Yan X, Barac G, et al. ACS Applied Materials & Interfaces, 2017, 9(41), 36400.
30 Preston D J, Song Y, Lu Z, et al. ACS Applied Materials & Interfaces, 2017, 9(48), 42383.
31 Smith J D, Dhiman R, Anand S, et al. Soft Matter, 2013, 9, 1772.
32 Schellenberger F, Xie J, Encinas N, et al. Soft Matter, 2015, 11, 7617.
33 Tuo Y, Zhang H, Chen W, et al. Applied Surface Science, 2017, 423, 365.
34 Luo H, Yin S, Huang S, et al. Applied Surface Science, 2019, 470, 1139.
35 Gao X, Guo Z. Journal of Colloid and Interface Science, 2018, 512, 239.
36 Sun J, Wang C, Song J, et al. Journal of Materials Science, 2018, 53, 16099.
37 Qian B, Shen Z. Langmuir, 2005, 21, 9007.
38 Liu J, Huang X, Li Y, et al. Journal of Materials Chemistry, 2006, 16, 4427.
39 Washo B D. Orangic Coat and Applied Polymer Science Proceed, 1982, 47, 69.
40 Woodward I, Schofield W C E, Roucoules V, et al. Langmuir, 2003, 19, 3432.
41 Coulson S R, Woodward I, Badyal J P S. Journal of Physical Chemistry B, 2000, 104, 8836.
42 Youngblood J P, McCarthy T J. Macromolecules, 1999, 32(20), 6800.
43 Binh N T, Hanh V T H, Ngoc N T, et al. Materials Chemistry and Phy-sics, 2021, 265, 124502.
44 Subramanyam S B, Azimi G, Varanasi K K. Advanced Materials Interfaces, 2014, 1, 1300068.
45 Doll K, Fadeeva E, Schaeske J. ACS Applied Materials & Interfaces, 2017, 9, 9359.
46 Yong J, Huo J, Yang Q, et al. Advanced Materials Interfaces, 2018, 5, 1701479.
47 Dong Z, Schumann M F, Hokkanen M J, et al. Advanced Materials, 2018, 30, 1803890.
48 Fang Y, Yong J, Cheng Y, et al. Advanced Materials Interfaces, 2021, 8, 2001334.
49 He W, Liu P, Jiang J, et al. Journal of Materials Chemistry A, 2018, 6, 4199.
50 Zhang P, Zhang L, Chen H, et al. Advanced Materials, 2017, 29, 1702995.
51 Wang P, Li T, Zhang D. Corrosion Science, 2017, 128, 110.
52 Gou X, Guo Z. Langmuir, 2020, 36, 8983.
53 Wang C, Yan Y, Du D, et al. ACS Applied Materials & Interfaces, 2020, 12, 29767.
54 Jing X, Guo Z. ACS Applied Materials & Interfaces, 2019, 11(39), 35949.
55 Zhang J, Wang A, Seeger S. Advanced Functional Materials, 2014, 24, 1074.
56 Zhang M, Liu Q, Chen R, et al. Journal of Alloys and Compounds, 2018, 764, 730.
57 He X, Lou T, Yang Z, et al. Applied Surface Science, 2021, 543, 148848.
58 Tadanaga K, Katata N, Minami T. Journal the American Ceramic Society, 1997, 80(4), 1040.
59 Tadanaga K, Morinaga J, Matsuda A, et al. Chemistry of Materials, 2000, 12, 590.
60 Wei C, Zhang G, Zhang Q, et al. ACS Applied Materials & Interfaces, 2016, 8(50), 34810.
61 Zhu G H, Cho S, Zhang H, et al. Langmuir, 2018, 34, 4722.
62 Manna U, Raman N, Welsh M A, et al. Advanced Functional Materials, 2016, 26, 3599.
63 Coustet M, Irigoyen J, Irigoyen T A, et al. Journal of Colloid and Interface Science, 2014, 421, 132.
64 Sunny S, Vogel N, Howell C, et al. Advanced Functional Materials, 2014, 24, 6658.
65 Tsuge Y, Moriya T, Moriyama Y, et al. ACS Applied Materials & Interfaces, 2017, 9, 15122.
66 Sun W, Wang L, Yang Z, et al. Corrosion Science, 2017, 128, 176.
67 Zhuang A, Liao R, Lu Y, et al. ACS Applied Materials & Interfaces, 2017, 9, 42327.
68 Tan J, Ho J, An Z, et al. International Journal of Electrochemical Science, 2017, 12, 40.
69 Yang S, Qiu R, Song H, et al. Applied Surface Science, 2015, 328, 491.
70 Liu M, Hou Y, Li J, et al. Chemical Engineering Journal, 2018, 337, 462.
71 Wang J, Chen X, Kang Y, et al. Applied Surface Science, 2010, 257, 1473.
72 Hanh V T H, Truong M X, Nguyen T B. Cold Regions Science and Technology, 2021, 186, 103280.
73 Yuan S, Zhang X, Liu D, et al. Progress in Organic Coatings, 2020, 142, 105563.
74 Feng J, Zhong L, Guo Z. Chemical Engineering Journal, 2020, 388, 124283.
75 Fan H, Guo Z. Journal of Colloid and Interface Science, 2021, 591, 418.
76 Sun Y, Guo Z. Chemical Engineering Journal, 2020, 381, 122629.
77 Liu M, Li J, Hou Y, et al. ACS Nano, 2017, 11, 1113.
78 Li D, Lin Z, Zhu J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126590.
79 Su C, Chang J, Tang K, et al. Separation and Purification Technology, 2017, 178, 279.
80 Wu J, Zhang B, Wang B, et al. ChemNanoMat, 2017, 3, 869.
81 Lenhart J L, Cole P J. The Journal of Adhesion, 2006, 82, 945.
82 Yao X, Wu S, Chen L, et al. Angewandate Chemie-International Edition, 2015, 127, 9103.
83 Sotiri I, Tajik A, Lai Y, et al. Biointerphases, 2018, 13, 06D401.
84 Urata C, Dunderdale G J, England M W, et al. Journal of Materials Chemistry A, 2015, 3, 12626.
85 Zhang H, Liang Y, Wang P, et al. Progress in Organic Coatings, 2019, 132, 132.
86 Urata C, Nagashima H, Hatton B D, et al. ACS Applied Materials & Interfaces, 2021, 13, 28925.
87 Liu H, Zhang P, Liu M, et al. Advanced Materials, 2013, 25, 4477.
88 Yao X, Dunn S S, Kim P, et al. Angewandate Chemie-International Edition, 2014, 53, 4418.
89 Kommeren S, Guerin A J, Dale M L, et al. Journal Marine Science and Engineering, 2019, 7, 419.
90 Zhang H, Wang P, Zhang D. Colloids and Surfaces A, 2018,538, 140.
91 Wu L, Dong Z, Du H, et al. Research, 2018, DOI: 10.1155/2018/4795604.
92 Basu S, Hanh B M, Chua J Q I, et al. Journal of Colloid and Interface Science, 2020, 568, 185.
93 Zhang H, Yan H, Hu Z, et al. Journal of Magnetism and Magnetic Materials, 2018, 451, 102.
94 Cui W, Pakkanen T A. Journal of Colloid and Interface Science, 2020, 558, 251.
95 Ye L, Chen F, Liu J, et al. Macromolecular Rapid Communications, 2019, 40, 1900395.
96 Mukherjee R, Habibi M, Rashed Z T, et al. Scientific Reports, 2018, 8, 11698.
97 Kida T, Teragaki A, Kalaw J M, et al. Chemical Communications, 2020, 56, 7581.
98 Wang Z, Yi B, Wu M, et al. Advanced Functional Materials, 2021, 31, 2102888.
99 Fu X J. Preparation and properties of supramolecular organogels and hydrogels. Ph.D. Thesis, Huazhong University of Science and Technology, China, 2007(in Chinese).
付新建. 超分子有机凝胶和水凝胶的制备及其性能研究. 博士学位论文,华中科技大学,2007.
100 Salbaum T, Galvan Y, Haumann M, et al. Journal of Materials Chemistry A, 2021, 9, 2357.
101 Yan M, Chen R, Zhang C, et al. ACS Applied Materials & Interfaces, 2020, 12, 39807.
102 Gao Z, Xu T, Miao X, et al. Surfaces and Interfaces, 2021, 24, 101022.
103 Das A, Theato P. Chemical Reviews, 2016, 116, 1434.
104 Lin S, Shang J, Theato P. ACS Macro Letters, 2018, 7, 431.
105 Guo P, Wang Z, Heng L, et al. Advanced Functional Materials, 2019, 29, 1808717.
106 Liang Y, Wang P, Zhang D. ACS Applied Bio Materials, 2021, 4, 6056.
107 Vogel N, Belisle R A, Hatton B, et al. Nature Communications, 2013, 4, 2176.
108 Pant R, Ujjain S K, Nagarajan A K, et al. The European Physical Journal Applied Physics, 2016, 75, 11301.
109 Yu M, Liu M, Hou Y, et al,Journal of Materials Science, 2020, 55, 4225.
110 Huang W, Chen X, Hu M, et al. Chemistry of Materials,2019,31,834.
111 Hajeesaeh S, Muensit N, Van Dommelen P, et al. Materials Research Express, 2020, 7, 106409.
112 Kim P, Kreder M J, Alvarenga J, et al. Nano Letters, 2013, 13, 1793.
113 Howell C, Vu T L, Johnson C P, et al. Chemistry of Materials, 2015, 27(5), 1792.
114 Chen X, Wen G, Guo Z. Materials Horizons, 2020, 7, 1697.
115 Zhang J, Yao Z. Journal of Bionic Engineering, 2019, 16, 291.
116 Smith N M, Ebrahimi H, Ghosh R, et al. PNAS, 2018, 115(26), E5887.
117 Han X, Tang X, Chen R, et al. Chemical Engineering Journal, 2021, 420, 129599.
118 Gao X, Wen G, Guo Z. Colloids and Surfaces A, 2018, 559, 115.
119 Bandyopadhyay S, Khare S, Bhandaru N, et al. Langmuir, 2020, 36, 4135.
120 Zhang J, Zhu L, Zhao S, et al. Separation and Purification Technology, 2021, 256, 117751.
121 Han K, Wang Z, Heng L, et al. Journal of Materials Chemistry A, 2021, 9, 16974.
122 O'’Hagan D. Chemical Society Reviews, 2008, 37, 308.
123 Fan H, Guo Z. New Journal of Chemistry, 2020, 44, 15438.
124 Jing X, Guo Z. Nanoscale, 2019, 11, 8870.
125 Gou X, Guo Z. Langmuir, 2020, 36, 64.
126 Femg Y, Chen S, Cheng Y F. Surface & Coatings Technology, 2018, 340, 55.
127 Li H, Wei H, Zou X. Materials Chemistry and Physics, 2020, 246, 122839.
128 Wang M, Zhang D, Yang Z, et al. Langmuir, 2020, 36, 10279.
129 Li J, Shi L, Chen Y, et al. Journal of Materials Chemistry, 2012, 22, 9774.
130 Doll K, Yang I, Fadeeva E, et al. ACS Applied Materials & Interfaces, 2019, 11, 23026.
131 Cao J, An Q, Liu Z, et al. Sensors & Actuators B: Chemical, 2019, 291, 470.
132 Rao Q, Li A, Zhang J, et al. Journal of Materials Chemistry A, 2019, 7, 2172.
133 Chen Y, Guo Z. Journal of Materials Chemistry A, 2020, 8, 24075.
134 Awad T S, Asker D, Hatton B D. ACS Applied Materials & Interfaces, 2018, 10, 22902.
135 Weisensee P B, Wang Y, Qian H, et al. International Journal of Heat and Mass Transfer, 2017, 109, 187.
136 Peppou-Chapman S, Hong J K, Waterhouse A, et al. Chemical Society Reviews, 2020, 49, 3688.
137 Anand S, Paxson A T, Dhiman R, et al. ACS Nano, 2012, 6, 10122.
138 Miranda D F, Urata C, Masheder B, et al. APL Materials, 2014, 2, 056108.
139 Wang X Q, Gu C D, Wang L Y, et al. Chemical Engineering Journal, 2018, 343, 561.
140 Tonelli M, Peppou-Chapman S, Ridi F, et al. The Journal of Physical Chemistry C, 2019, 123, 2987.
141 Zhao L, Li R, Xu R, et al. Journal of Membrane Science, 2020, 611, 118289.
142 Zhang J, Wu L, Li B, et al. Langmuir, 2014, 30, 14292.
143 Daniel D, Mankin M N, Belisle R A, et al. Applied Physical Letters, 2013, 102, 231603.
144 Xing K, Li Z, Wang Z, et al. Chemical Engineering Journal, 2021, 418, 129079.
145 Pham Q N, Zhang S, Montazeri K, et al. Langmuir,2018,34,14439.
146 Wang N, Xiong D, Pan S, et al. Applied Surface Science, 2016, 387, 1219.
147 Baek S, Yong K. Applied Surface Science, 2020, 506, 144689.
148 Owen M J, Dvornic P R. Silicone Surface Science, Springer, German, 2012, pp. 1.
149 Yang Z, Liu X, Tian Y. Progress in Organic Coatings, 2020, 138, 105313.
150 Yang Z, He X, Chang J, et al. Surface & Coatings Technology, 2021, 415, 127136.
151 Maszewska M, Florowska A, Dłuzewska E, et al. Molecules, 2018, 23, 1746.
152 Ma W, Higaki Y, Otsuka H, et al. Chemical Communications, 2013, 49, 597.
153 Gurav A B, Shi H, Duan M, et al. Chemical Engineering Journal, 2021, 416, 127809.
154 Deng R, Shen T, Chen H, et al. Journal of Materials Chemistry A, 2020,8, 7536.
155 Kreder M J, Daniel D, Tetreault A, et al. Physical Review, 2018, 8, 031053.
156 Sadullah M S, Semprebon C, Kusumaatmaja H. Langmuir, 2018, 34(27), 8112.
157 Yu C, Zhu X, Li K, et al. Advanced Functional Materials, 2017, 27, 1701605.
158 Wang X, Wang Z, Heng L, et al. Advanced Functional Materials, 2020, 30, 1902686.
159 Liu P, Zhang H, He W, et al. ACS Nano, 2017, 11, 2248.
160 Singh N, Kakiuchida H, Sato T, et al. Langmuir, 2018, 34, 11405.
161 Wang L, McCarthy T J. Angewandate Chemie-International Edition, 2016, 128, 252.
162 Zhao X, Khandoker M A R, Golovin K. ACS Applied Materials & Interfaces, 2020, 12, 15748.
163 Mao X, Tan J, Xie L, et al. Chemical Engineering Journal, 2021, 404, 127064.
164 Xie L, Cui X, Liu J, et al. ACS Applied Materials & Interfaces, 2021, 13, 6941.
165 Yeon H, Wang C, Lehn R C V, et al. Langmuir, 2017, 33, 4628.
166 Chen J, Wang Z, Oyola-Reynoso S, et al. Langmuir, 2017, 33, 13451.
167 Siriviriyanun A, Imae T. Chemical Engineering Journal,2014,246,254.
168 Barrena E, Kopta S, Ogletree D F, et al. Physical Review Letters, 1999, 82, 14.
169 Koch K, Ensikat H J. Micron, 2008, 39, 759.
170 Neinhuis C, Koch K, Barthlott W. Planta, 2001, 213, 427.
171 Manabe K, Matsubayashi T, Tenjimbayashi M, et al. ACS Nano, 2016, 10, 9387.
172 Meng X, Wang Z, Wang L, et al. Journal of Materials Chemistry A, 2018, 6, 16355.
173 Guo P, Sun Y, Zhang Y, et al. ChemPhysChem, 2019, 20, 946.
174 Xiang T, Liu J, Liu Q, et al. Chemical Engineering Journal, 2021, 417, 128083.
175 Han G, Nguyen T B, Park S, et al. ACS Nano, 2020, 14, 10198.
[1] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[2] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[3] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[4] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[5] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[6] 欧珊, 牟自豪, 林涛, 李瑶, 冯威, 刘文龙. 两步法制备碳化钛薄膜及其电容性能[J]. 材料导报, 2021, 35(z2): 18-21.
[7] 罗祥, 王玲, 王振地. 混凝土中气泡的产生与发展:机理和影响因素[J]. 材料导报, 2021, 35(z2): 213-217.
[8] 李书进, 刘源涛, 厉见芬, 盛炎民. 盾构废弃泥沙再生制备高性能注浆材料的试验研究[J]. 材料导报, 2021, 35(z2): 275-278.
[9] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[10] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[11] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[12] 贾东, 蔡淑红, 李献强, 郝文静, 刘波涛, 谭凯锋, 王峰. 纳米流体导热介质研究进展[J]. 材料导报, 2021, 35(z2): 540-549.
[13] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[14] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[15] 罗遥凌, 高育欣, 闫欣宜, 谢昱昊, 毕耀. 热养护UHPC后期水稳定性[J]. 材料导报, 2021, 35(Z1): 242-246.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed