Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22030244-7    https://doi.org/10.11896/cldb.22030244
  无机非金属及其复合材料 |
膨润土改性偏钛酸型钛锂离子筛及吸附性能研究
张理元1,2,3,*, 李燕1, 税亿1, 张菁菁1, 吴娜1, 阳金菊1
1 内江师范学院化学化工学院,四川 内江 641112
2 果类废弃物资源化四川省高校重点实验室,四川 内江 641112
3 沱江流域特色农业资源四川省科技资源共享服务平台,四川 内江 641112
Bentonite Modified Metatitanate Titanium-Lithium Ion Sieve and Its Adsorption Performance
ZHANG Liyuan1,2,3,*, LI Yan1, SHUI Yi1, ZHANG Jingjing1, WU Na1, YANG Jinju1
1 College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641112, Sichuan, China
2 Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Sichuan Provincial College, Neijiang 641112, Sichuan, China
3 Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Neijiang 641112, Sichuan, China
下载:  全 文 ( PDF ) ( 6603KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以硫酸钛为钛源,乙酸锂为锂源,膨润土为改性剂,采用无机沉淀胶溶法制备了偏钛酸型锂离子筛前驱体,经盐酸洗脱后,得到膨润土改性的偏钛酸型锂离子筛,研究了其吸附性能。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、比表面积分析仪(BET)、X射线光电子能谱仪(XPS)分别对样品的表面形貌、晶相组成、比表面积和孔结构、元素含量和价态进行了表征分析。结果表明,膨润土改性后,样品呈现出介孔结构,50 ℃时,用0.2 mol/L盐酸洗脱6 h,该样品的Li+洗脱率达到99.85%,在25 ℃下,对Li+溶度为2 g/L的LiOH溶液吸附24 h,改性锂离子筛对Li+的吸附容量达到45.49 mg/g,与未改性样品的吸附容量30.62 mg/g相比,有明显提升。改性后的Li2TiO3中存在Si-O四面体层,有部分Li进入Si-O四面体空隙中。吸附动力学过程符合伪二级动力学模型,吸附方式为化学单层吸附。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张理元
李燕
税亿
张菁菁
吴娜
阳金菊
关键词:  无机沉淀胶溶法  钛锂离子筛  膨润土  酸洗  吸附    
Abstract: The precursor of metatitanic acid lithium ion sieve was prepared by inorganic precipitation gel solution method with titanium sulfate as titanium source, lithium acetate as lithium source and bentonite as modifier. After elution with hydrochloric acid, the metatitanic acid lithium ion sieve modified by bentonite was obtained, and its adsorption performance was studied. The surface morphology, crystal phase composition, specific surface area and pore structure, element content and valence of the samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and surface area analyzer (BET) and X-ray photoelectron spectrometer (XPS), respectively. The results show that, after bentonite modification, a mesoporous structure is observed in the sample, the elution rate of achieves 99.85% by pickling the sample with 0.2 mol/L hydrochloric acid at 50 ℃ for 6 h. The adsorption capacity of lithium ion sieve modified by bentonite reaches 45.49 mg/g in LiOH solution with a Li+concentration of 2 g/L at 25 ℃ for 24 h, which is significantly higher than that of the unmodified sample (30.62 mg/g). A Si-O tetrahedral layer is existed in the modified Li2TiO3, and part of Li enters the Si-O tetrahedral gap, resulting in the increase of the surface area and adsorption capacity of the modified sample. The adsorption kinetic process conforms to the pseudo second-order kinetic model, and the adsorption mode is chemical monolayer adsorption.
Key words:  inorganic precipitation-peptization method    titanium lithium ion sieve    bentonite    pickling    adsorption
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TB34  
基金资助: 四川省科技计划(2023YFG0247);内江师范学院大学生创新项目(X2022001)
通讯作者:  *张理元,2014年12月毕业于四川大学材料学专业,获博士学位。目前为内江师范学院化学化工学院教授,主要从事无机功能材料、环境保护材料研究。主持四川省科技计划项目、四川省教育厅重点项目、校级科研项目、横向项目等10余项。近几年,以第一作者发表学术论文40余篇,其中SCI/EI收录20余篇,以第一发明人授权国家发明专利4项。zhangliyuansir@126.com   
引用本文:    
张理元, 李燕, 税亿, 张菁菁, 吴娜, 阳金菊. 膨润土改性偏钛酸型钛锂离子筛及吸附性能研究[J]. 材料导报, 2023, 37(19): 22030244-7.
ZHANG Liyuan, LI Yan, SHUI Yi, ZHANG Jingjing, WU Na, YANG Jinju. Bentonite Modified Metatitanate Titanium-Lithium Ion Sieve and Its Adsorption Performance. Materials Reports, 2023, 37(19): 22030244-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22030244  或          https://www.mater-rep.com/CN/Y2023/V37/I19/22030244
1 Zhang W, Mou Y X, Zhao S, et al. Progress in Chemistry, 2017, 29(2-3), 231(in Chinese).
张文, 牟英炘, 赵颂, 等. 化学进展, 2017, 29(2-3), 231.
2 Liu D F, Sun S Y, Yu J G. CIESC Journal, 2018, 69(1), 141(in Chinese).
刘东帆, 孙淑英, 于建国. 化工学报, 2018, 69(1), 141.
3 Zhao X, Zhang Q, Wu H H, et al. Progress in Chemistry, 2017, 29(7), 796(in Chinese).
赵旭, 张琦, 武海虹, 等. 化学进展, 2017, 29(7), 796.
4 Liu X L, Zhong H, Tang Z J. Inorganic Chemicals Industry, 2009, 41(6), 4(in Chinese).
刘向磊, 钟辉, 唐中杰. 无机盐工业, 2009, 41(6), 4.
5 Yang Z J, Xiang L. Sea-Lake Salt and Chemical Industry, 2005, 34(6), 27(in Chinese).
杨兆娟, 向兰. 海湖盐与化工, 2005, 34(6), 27.
6 Ounissi T, Dammak L, Fauvarque J F, et al. Separation and Purification Technology, 2021, 275, 119134.
7 Liu Z, Wang X Z, Chen A M. Industrial Water Treatment, 2006, 26(11), 12(in Chinese).
刘赞, 王新忠, 陈爱民. 工业水处理, 2006, 26(11), 12.
8 Gao D, Guo Y, Yu X, et al. Journal of Chemical Engineering of Japan, 2016, 49(2), 104.
9 Shi C, Jing Y, Jia Y. Journal of Molecular Liquids, 2016, 215, 640.
10 Xu N C, Shi D D, Li S X, et al. Materials Reports, 2017, 31(9), 116(in Chinese).
许乃才, 史丹丹, 黎四霞, 等. 材料导报, 2017, 31(9), 116.
11 Bai C, Guo M, Zhang H F, et al. Chemical Industry and Engineering Progress, 2017, 36(3), 802(in Chinese).
柏春, 郭敏, 张慧芳, 等. 化工进展, 2017, 36(3), 802.
12 Liu C, Tao B, Wang Z, D, et al. Chemical Engineering Science, 2021, 229, 115984.
13 Zhang R, Lu Q W, Lin S, et al. CIESC Journal, 2021, 72(6), 3053(in Chinese).
张瑞, 陆旗玮, 林森, 等. 化工学报, 2021, 72(6), 3053.
14 Wang C, Zhai Y L, Sakai Y J, et al. Inorganic Chemicals Industry, 2014, 46(4), 37(in Chinese).
王昶, 翟炎龙, 酒井裕司, 等. 无机盐工业, 2014, 46(4), 37.
15 Shi D D, Xu N C. Inorganic Chemicals Industry, 2015, 47(11), 11(in Chinese).
史丹丹, 许乃才. 无机盐工业, 2015, 47(11), 11.
16 Liu L, Zhang H, Zhang Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 468, 280.
17 Xiao J L, Sun S Y, Song X, et al. Chemical Engineering Journal, 2015, 279, 659.
18 Ma L, Nie Z, Xia X, et al. Journal of Environmental Chemical Enginee-ring, 2017, 5(1), 995.
19 Yuan J S, Zhou J Q, Ji Z Y. Journal of Functional Materials, 2012, 43(23), 3197(in Chinese).
袁俊生, 周俊奇, 纪志永. 功能材料, 2012, 43(23), 3197.
20 Wang L, Zhang X, Ma L B, et al. Journal of Salt Science and Chemical Industry, 2018, 47(4), 8(in Chinese).
王亮, 张欣, 马来波, 等. 盐科学与化工, 2018, 47(4), 8.
21 Wang H, Yang X Y, Yin Z L, et al. Chinese Journal of Inorganic Che-mistry, 2017, 33(10), 1775(in Chinese).
王豪, 杨喜云, 尹周澜, 等. 无机化学学报, 2017, 33(10), 1775.
22 Qian F, Zhao B, Guo M, et al. Separation and Purification Technology, 2020, 11, 7583.
23 Marthi R, Asgar H, Gadikota G, et al. ACS Applied Materials & Interfaces, 2021, 13, 8361.
24 Chen S Q, Chen Z S, Wei Z W, et al. Chemical Engineering Journal, 2021, 410, 128320.
25 Zhou S Y, Guo X J, Yan X, et al. Particuology, 2022, 69, 100.
26 Zhao K Y, Tong B J, Yu X P, et al. Chemical Engineering Journal, 2022, 430, 131423.
27 Chitrakar R, Makita Y, Ooi K, et al. Dalton Transactions, 2014, 43(23), 8933.
28 Hossain S M, Ibrahim I, Choo Y, et al. Desalination, 2022, 525, 115491.
29 Zhang L, Zhou D, He G, et al. Materials Letters, 2014, 135, 206.
30 Zhang L, Zhou D, He G, et al. Materials Letters, 2015, 145, 351.
31 He G, Zhang L Y, Zhou D L, et al. Ionics, 2015, 21(8), 2219.
32 Zhang L, He G, Zhou D, et al. Ionics, 2016, 22(11), 2007.
33 Zhang L, Zhou D, Yao Q, et al. Applied Surface Science, 2016, 368, 82.
34 Pu X H, Du X H, Jing P, et al. Chemical Engineering Journal, 2021, 425, 130550.
35 Shi X C, Zhang Z B, Zhou D F, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(1), 253.
36 Dong D Q, Wang Y S, Fang C. CIESC Journal, 2017, 68(7), 2812(in Chinese).
董殿权, 王永顺, 房超. 化工学报, 2017, 68(7), 2812.
37 Chen Z Z, Shen W H, Chen L F, et al. The Chinese Journal of Nonferrous Metals, 2017, 27(3), 547(in Chinese).
陈自正, 沈卫华, 陈立芳, 等. 中国有色金属学报, 2017, 27(3), 547.
38 Ji Z Y, Wang N, Yuan J S, et al. Materials Reports, 2016, 30(12), 37(in Chinese).
纪志永, 王妮, 袁俊生, 等. 材料导报, 2016, 30(12), 37.
39 Shen Y, Søndergaard M, Christensen M, et al. Chemistry of Materials, 2014, 26(12), 3679.
40 Ji Z Y, Yang F J, Zhao Y Y. Chemical Engineering Journal, 2017, 328, 768.
41 Laumann A, Fehr K T, Wachsmann M, et al. Solid State Ionics, 2010, 181(33), 1525.
42 Plachy T, Mrlik M, Kozakova Z, et al. ACS Applied Materials & Interfaces, 2015, 7(6), 3725.
43 Yu Q, Sasaki K. Hydrometallurgy, 2016, 165(30), 118.
44 Zhang L Y, Liu Y W, Huang L, et al. RSC Advances, 2018, 8(3), 1385.
45 Zhang L Y, You Y H, Liu Y W, et al. Materials Reports, 2019, 33(12), 4056(in Chinese).
张理元, 由耀辉, 刘义武, 等. 材料导报, 2019, 33(12), 4056.
46 Modabberi S, Namayandeh A, Setti M, et al. Applied Clay Science, 2019, 168, 56.
47 Luo L F, Ge Y, Ju S P, et al. Anhui Chemical Industry, 2021, 47(6), 55(in Chinese).
罗林飞, 葛 源, 居树萍, 等. 安徽化工, 2021, 47(6), 55.
48 Wang K X, Ma H, Pu S Y, et al. Journal of Hazardous Materials, 2019, 362, 160.
49 Marthi R, Smith Y R. Symposium on Rare Metal Extraction and Processing, 2021.
50 Li X W, Chao Y H, Chen L L, et al. Chemical Engineering Journal, 2020, 392, 123731.
51 Huang Z H, Li Y Z, Chen W J, et al. Materials Chemistry and Physics, 2017, 202, 266.
52 Cao X, Luo S Q, Liu C, et al. Advanced Powder Technology, 2017, 28, 993.
53 Naiya T K, Bhattacharya A K, Das S K. Colloid and Interface Science, 2008, 325(1), 48.
[1] 赵岚, 韩颖超. 纳米氢氧化镧磷吸附剂的制备及水体除磷研究[J]. 材料导报, 2025, 39(8): 24010253-7.
[2] 龙武剑, 唐懿, 郑淑仪, 何闯. 氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理[J]. 材料导报, 2025, 39(7): 23100196-10.
[3] 张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春, 朱敏. MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化[J]. 材料导报, 2025, 39(6): 24050008-6.
[4] 史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
[5] 刘平, 王晨, 韩庆文, 苗攀, 马家玉. 半包覆锰基复合锂离子筛的制备与吸附性能[J]. 材料导报, 2025, 39(4): 23110239-7.
[6] 李志录, 王敏. 氯化锂溶液中钾离子的吸附去除研究[J]. 材料导报, 2025, 39(4): 23120006-6.
[7] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[8] 鲍志超, 周雪松. 高铁酸钾改性酒糟生物炭对诺氟沙星的吸附性能研究[J]. 材料导报, 2025, 39(4): 24010137-8.
[9] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[10] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[11] 刘欣颖, 雷雨菡, 张光辉, 顾平. 放射性含钴废水吸附材料的研究进展[J]. 材料导报, 2025, 39(12): 24070147-9.
[12] 刘志伟, 武婵, 遆鑫森, 刘有智. SDBS插层与吸附协同增强片状镍钴氢氧化物的电化学性能[J]. 材料导报, 2025, 39(10): 23070007-8.
[13] 蒋旭, 张峻博, 代朝猛, 李继香, 李质, 买买提江·买斯德克, 张亚雷, 付融冰. 分子印迹技术在地下水修复中的应用研究进展[J]. 材料导报, 2025, 39(10): 23080119-6.
[14] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[15] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed