Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 23070007-8    https://doi.org/10.11896/cldb.23070007
  无机非金属及其复合材料 |
SDBS插层与吸附协同增强片状镍钴氢氧化物的电化学性能
刘志伟*, 武婵, 遆鑫森, 刘有智
中北大学化学与化工学院,超重力化工过程山西省重点实验室,太原 030051
SDBS Intercalation and Adsorption Synergistically Enhance the Electrochemical Performance of Flaky Nickel-Cobalt Hydroxide
LIU Zhiwei*, WU Chan, TI Xinsen, LIU Youzhi
Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
下载:  全 文 ( PDF ) ( 21913KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍钴层状双氢氧化物(Ni-Co LDH)具有高的理论比容量与丰富的化学活性位点,但片状Ni-Co LDH存在比容量偏低、倍率性能较差等问题。针对以上问题,本工作采用溶剂热法制备片状Ni-Co LDH电极材料,并以十二烷基苯磺酸钠(SDBS)的水溶液为插层剂,重点探究液相插层改性前后电极材料的形貌、结构与电化学性能的变化规律。结果表明,SDBS插层与吸附双重作用能够扩大Ni-Co LDH的层间距,并增强电极材料的表面活性,进而加快电解质离子的扩散,提升其比容量和倍率性能;改性后的Ni-Co LDH比容量为677 C/g(1504 F/g,2 A/g),其容量保持率为72%(1~30 A/g),明显优于未改性的材料。此外,电化学动力学分析进一步表明,SDBS插层与吸附作用显著提升Ni-Co LDH电池型电极材料的容量贡献占比。最后,以改性Ni-Co LDH为正极材料,活性炭(AC)为负极材料,组装混合电容器,其在功率密度为363 W/kg时,具有46 Wh/kg的能量密度。本工作提出SDBS插层与吸附增强Ni-Co LDH电化学性能的思路,可为高性能电极材料的制备提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘志伟
武婵
遆鑫森
刘有智
关键词:  镍钴层状双氢氧化物  插层与吸附  电化学性能  混合电容器    
Abstract: Nickel-cobalt layered double hydroxide (Ni-Co LDH) has a high theoretical specific capacity and rich chemically active sites. However, flaky Ni-Co LDH has problems such as low specific capacity and poor rate capability. To address these problems, this work adopts a solvent thermal method to prepare Ni-Co LDH electrode materials, and an aqueous solution of sodium dodecylbenzene sulfonate (SDBS) as the intercalator. The morphological structure and electrochemical properties of the electrode materials before and after liquid-phase intercalation have been investigated. It is found that the SDBS intercalation and adsorption can expand the layer spacing of Ni-Co LDH, enhance the surface activity of electrode materials, and thus accelerate the diffusion of electrolyte ions, improving its specific capacity and rate capability. The specific capacity of the mo-dified Ni-Co LDH was 677 C/g (1 504 F/g, 2 A/g), and its capacity retention rate was 72% (1—30 A/g), which was significantly better than that of the unmodified material. In addition, the electrochemical kinetic analysis further shows that the SDBS intercalation and adsorption substantially improve the capacity contribution of Ni-Co LDH battery-type electrode material. Finally, the enhanced Ni-Co LDH was used as the positive electrode material and activated carbon (AC) as the negative electrode material to assemble a hybrid capacitor. It had a high energy density of 46 Wh/kg at a power density of 363 W/kg. This work proposes an idea of SDBS intercalation and adsorption to enhance the electrochemical performance of Ni-Co LDH, which can be used as a reference for synthesizing high-performance electrode materials.
Key words:  nickel-cobalt layered double hydroxide    intercalation and adsorption    electrochemical performance    hybrid capacitor
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TQ152  
基金资助: 国家自然科学基金青年基金(21706245);山西省研究生创新项目(2021Y606;2022Y615)
通讯作者:  *刘志伟,博士,中北大学化学与化工学院副教授、硕士研究生导师。目前主要从事电化学储能材料、反应过程强化等方面的研究工作。lzwww6723487@126.com   
引用本文:    
刘志伟, 武婵, 遆鑫森, 刘有智. SDBS插层与吸附协同增强片状镍钴氢氧化物的电化学性能[J]. 材料导报, 2025, 39(10): 23070007-8.
LIU Zhiwei, WU Chan, TI Xinsen, LIU Youzhi. SDBS Intercalation and Adsorption Synergistically Enhance the Electrochemical Performance of Flaky Nickel-Cobalt Hydroxide. Materials Reports, 2025, 39(10): 23070007-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23070007  或          https://www.mater-rep.com/CN/Y2025/V39/I10/23070007
1 Qi J, Chen Y, Li Q, et al. Journal of Power Sources, 2020, 445, 227342.
2 Feng M, Wang W, Hu Z, et al. Science China-Materials, 2023, 66(3), 944.
3 Du Q, Zhao Y, Chen Y, et al. Green Energy & Environment, 2023, 8(2), 579.
4 Zhang W, Gao X, Yang X, et al. Chemical Engineering Journal, 2023, 460, 141824.
5 Wu Z, Qu Y, Zhang W, et al. ACS Omega, 2021, 6, 35244.
6 Xia H, Li G, Cai H, et al. Dalton Transactions, 2019, 48(32), 12168.
7 Özoğul A, Gnecco E, Baykara M Z. Applied Surface Science Advances, 2021, 6, 100146.
8 Shi T, Deng Q, Li D. Packaging Engineering, 2022, 43(21), 50 (in Chinese).
施彤, 邓巧云, 李大纲. 包装工程, 2022, 43(21), 50.
9 Safarpour M, Arefi-Oskoui S, Khataee A. Journal of Industrial and Engineering Chemistry, 2020, 82, 31.
10 Adachi-Pagano M, Forano C, Besse J P. Chemical Communications, 2000(1), 91.
11 Wang Y, Chen T, Liu H, et al. Journal of Nanoscience and Nanotechnology, 2019, 19(4), 2078.
12 Carrasco J A, Harvey A, Hanlon D, et al. Chemical Communications, 2019, 55(23), 3315.
13 Guan S, Dong Y, Jiang G, et al. Journal of Functional Materials, 2019, 50(9), 9142 (in Chinese).
官仕齐, 董燕, 江国栋, 等. 功能材料, 2019, 50(9), 9142.
14 Athira A R, Deepthi S, Xavier T S. Bulletin of Materials Science, 2021, 44(3), 178.
15 Athira A R, Vimuna V M, Tomy M, et al. Bulletin of Materials Science, 2022, 57(12), 6749.
16 Das M R, Borah J M, Kunz W, et al. Journal of Colloid and Interface Science, 2010, 344(2), 482.
17 Su W, Wu F, Fang L, et al. Journal of Alloys and Compounds, 2019, 799, 15.
18 Guo Y, Zhang S, Wang J, et al. Journal of Alloys and Compounds, 2020, 832, 154899.
19 Zhou Y, Chen Y, Liu L, et al. Journal of the Taiwan Institute of Chemical Engineers, 2023, 144, 104643.
20 Pandey B K, Shahi A K, Gopal R. Applied Surface Science, 2015, 347, 461.
21 Tahir M U, Arshad H, Zhang H, et al. Journal of Colloid and Interface Science, 2020, 579, 195.
22 Yin X, Ma X, He Y, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2021, 627, 127186.
23 Pan G, Jiang L, Zhou K, et al. Chemical Research and Applications, 2020, 32(11), 2044 (in Chinese).
潘国祥, 蒋黎豪, 周凯, 等. 化学研究与应用, 2020, 32(11), 2044.
24 Ran F, Yang X, Xu X, et al. Electrochimica Acta, 2019, 301, 117.
25 Tsai K J, Ni C S, Chen H Y, et al. Journal of Power Sources, 2020, 454, 227912.
26 Xu K, Chen J, Meng Y, et al. Energy Storage Science and Technology, 2023, 12(2), 357 (in Chinese).
许珂, 陈珏锡, 孟瑶, 等. 储能科学与技术, 2023, 12(2), 357.
27 Zhang C, Zhang L, Liu Q, et al. Applied Surface Science, 2022, 602, 154352.
28 Lu Y, Shin K H, Yu Y, et al. Advanced Functional Materials, 2021, 31(12), 2007247.
29 Gao X, Zhao Y, Dai K, et al. Chemical Engineering Journal, 2020, 384, 123373.
30 Dai X, Dai Y, Lu J, et al. Ionics, 2020, 26, 2501.
31 Wang Y, Liu Y, Zhang M, et al. Science China-Materials, 2022, 65(7), 1805.
32 Guo R, Li Y, Hu Z, et al. Chinese Journal of Inorganic Chemistry, 2021, 37(5), 886.
33 Gao X, Liu X, Wu D, et al. Advanced Functional Materials, 2019, 29, 1903879.
34 Zhang H, Usman T M, Yan X, et al. Chemical Engineering Journal, 2019, 368, 905.
35 Meng Z, Yan W, Zou M, et al. Journal of Colloid and Interface Science, 2021, 583, 722.
[1] 孙丽丽, 关宁, 王勇, 李永存. TiFe基储氢合金活化及电化学性能研究进展[J]. 材料导报, 2025, 39(4): 24010105-9.
[2] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[3] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[4] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[5] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[6] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[7] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[8] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[9] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[10] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[11] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[12] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[13] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[14] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[15] 邓安强, 罗永春, 袁远, 康晓燕, 周健飞, 谢云丁, 沈秉金, 王悦. 超点阵结构储氢合金研究进展[J]. 材料导报, 2023, 37(17): 22040141-9.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed