Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 23080119-6    https://doi.org/10.11896/cldb.23080119
  高分子与聚合物基复合材料 |
分子印迹技术在地下水修复中的应用研究进展
蒋旭1, 张峻博1, 代朝猛1,*, 李继香2, 李质1, 买买提江·买斯德克3, 张亚雷4, 付融冰4
1 同济大学土木工程学院,上海 200092
2 中国科学院上海高等研究院,上海 200120
3 新疆水利水电科学研究院,乌鲁木齐 830049
4 同济大学环境科学与工程学院,上海 200092
Research Progress on the Application of Molecular Imprinting Technology in Groundwater Remediation
JIANG Xu1, ZHANG Junbo1, DAI Chaomeng1,*, LI Jixiang2, LI Zhi1, MAIMAITIJIANG·Maisideke3, ZHANG Yalei4, FU Rongbing4
1 College of Civil Engineering, Tongji University, Shanghai 200092, China
2 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China
3 Xinjiang Research Institute of Water Conservancy and Hydropower, Urumqi 830049, China
4 College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 5041KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分子印迹聚合物(MIP)具有稳定性和特异吸附性,在地下水修复领域具有广阔的应用前景。首先对分子印迹技术的基本原理、聚合体系组成及制备方法进行了归纳总结,然后总结了计算机模拟技术在MIP合成中的应用;最后重点介绍了分子印迹技术应用于地下水修复的研究进展,如吸附剂、环境传感器、靶向催化剂等,并对分子印迹技术在地下水修复的后续研究方向进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋旭
张峻博
代朝猛
李继香
李质
买买提江·买斯德克
张亚雷
付融冰
关键词:  地下水  分子印迹技术  吸附剂  靶向催化剂  环境传感器    
Abstract: Molecular imprinted polymers (MIP) have stability and specific adsorption properties, and have broad application prospects in the field of groundwater remediation. Firstly, the basic principles, polymerization system composition, and preparation methods of molecular imprinting technology were summarized, and then the application of computer simulation technology in MIP synthesis was summarized. Finally, the research progress of molecular imprinting technology in groundwater remediation was emphasized, such as adsorbents, environmental sensors, targeted catalysts, etc. The future research directions of molecular imprinting technology in groundwater remediation were also prospected.
Key words:  groundwater    molecular imprinting technology    adsorbent    targeted catalyst    environmental sensor
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  X523  
基金资助: 国家重点研发计划(2019YFE0114900);国家自然科学基金(42077175;52270164)
通讯作者:  *代朝猛,博士,同济大学土木工程学院研究员、博士研究生导师。主要研究方向为地下水安全保障理论与技术、新型环境功能材料在地下水安全修复中的应用、地下水中污染物迁移转化规律及模拟。daichaomeng@tongji.edu.cn   
作者简介:  蒋旭,同济大学土木工程学院硕士研究生,在代朝猛研究员的指导下进行研究。目前主要研究领域为土壤及地下水中PAHs污染修复。
引用本文:    
蒋旭, 张峻博, 代朝猛, 李继香, 李质, 买买提江·买斯德克, 张亚雷, 付融冰. 分子印迹技术在地下水修复中的应用研究进展[J]. 材料导报, 2025, 39(10): 23080119-6.
JIANG Xu, ZHANG Junbo, DAI Chaomeng, LI Jixiang, LI Zhi, MAIMAITIJIANG·Maisideke, ZHANG Yalei, FU Rongbing. Research Progress on the Application of Molecular Imprinting Technology in Groundwater Remediation. Materials Reports, 2025, 39(10): 23080119-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23080119  或          https://www.mater-rep.com/CN/Y2025/V39/I10/23080119
1 Dai C M, Zhang J B, Li Y, et al. Technology of Water Treatment, 2022, 48(8), 1(in Chinese).
代朝猛, 张峻博, 李彦, 等. 水处理技术, 2022, 48(8), 1.
2 China Ecological Environment Status Bulletin 2022(Excerpt). Environmental Protection, 2023, 51(Z2), 64(in Chinese).
2022年中国生态环境状况公报(摘录). 环境保护, 2023, 51(Z2), 64.
3 Dai C M, Zhang J B, Duan Y P, et al. Journal of Tongji University(Natural Science), 2022, 50(3), 431(in Chinese).
代朝猛, 张峻博, 段艳平, 等. 同济大学学报(自然科学版), 2022, 50(3), 431.
4 Huang W J, Chen F, Yao Q, et al. Technology of Water Treatment, 2021, 47(7), 12(in Chinese).
黄文建, 陈芳, 么强, 等. 水处理技术, 2021, 47(7), 12.
5 Wang Y, Li N. Chemical Industry and Engineering Progress, 2010, 29(12), 2315(in Chinese).
王颖, 李楠. 化工进展, 2010, 29(12), 2315.
6 Jiang Y. Remediation of pesticide-contaminated groundwater by molecularly imprinted permeable reactive barrier technology. Master’ s Thesis, Shenyang University of Technology, China, 2020(in Chinese).
蒋赟. 分子印迹反应墙技术修复农药污染地下水. 硕士学位论文, 沈阳工业大学, 2020.
7 Ding S, Wan J, Wang Y, et al. Chemical Engineering Journal, 2021, 422, 130406.
8 Turiel E, Martin-Esteban A, Fernandez P, et al. Analytical Chemistry, 2001, 73(21), 5133.
9 Zhang J B, Dai C M, Li J X, et al. Separation and Purification Technology, 2024, 348, 127730.
10 Li X, Sun H, Wang L, et al. Chemical Engineering Journal, 2023, 470, 144203.
11 Yan H, Row K. International Journal of Molecular Sciences, 2006, 7(5), 155.
12 Lofgreen J E, Ozin G A. Chemical Society Reviews, 2014, 43(3), 911.
13 Hashim S N, Boysen R I, Schwarz L J, et al. Journal of Chromatography A, 2014, 1359, 35.
14 Oliveira M D, Gonzaga M, Araujo B S, et al. Chemical Papers, 2023, 77, 1821.
15 Xiao X, Yan K, Xu X, et al. Talanta, 2015, 138, 40.
16 Zhao M, Shao H, Ma J, et al. Journal of Chromatography A, 2020, 1615, 460751.
17 Ying T L, Gao M J, Zhang X L. Journal of Analytical Chemistry, 2001(1), 99(in Chinese).
应太林, 高孟姣, 张晓岚. 分析化学, 2001(1), 99.
18 Gaho M M, Memon G Z, Arain J B, et al. Chinese Journal of Analytical Chemistry, 2022, 50(6), 100079.
19 Bogdanowicz N, Lusina A, Nazim T, et al. Journal of Hazardous Materials, 2023, 450, 131068.
20 Ahmad A L, Lah N F C, Low S C. Journal of Polymer Research, 2018, 25(11), 243.
21 Jaoued-Grayaa N, Nasraoui C, Chevalier Y, et al. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2022, 647, 129008.
22 Zhang M, Gu L, Kong G, et al. Journal of Applied Polymer Science, 2019, 136(11), 47190.
23 Zin L C, Silva C F, Guimarães L, et al. Chemical Physics Letters, 2022, 799, 139640.
24 He J, Pan H, Xu L, et al. Journal of Chemical Research, 2021, 45(5-6), 400.
25 Yan H, Ho Row K. Separation Science and Technology, 2006, 41(9), 1841.
26 Orowitz T E, Ana Sombo P P A A, Rahayu D, et al. Molecules, 2020, 25(14), 3256.
27 Wang X, Qiu G, Ge Y, et al. Bulletin of Materials Science, 2020, 43(1), 286.
28 Li Z Y, Tian W J, Chu M L, et al. Process Safety and Environmental Protection, 2023, 171, 238.
29 Nikitina V N, Zaryanov N V, Kochetkov I R, et al. Sensors and Actuators B:Chemical, 2017, 246, 428.
30 Dong W G, Yan M, Zhang M L, et al. CIESC Journal, 2005(11), 99(in Chinese).
董文国, 闫明, 张敏莲, 等. 化工学报, 2005(11), 99.
31 Dong W G, Yan M, Wu G S, et al. CIESC Journal, 2005(7), 1247(in Chinese).
董文国, 闫明, 吴国是, 等. 化工学报, 2005(7), 1247.
32 Wu L Q. Theoretical prediction and regulation of molecularly imprinted polymer’ s affinity and Selectivity. Ph. D. Thesis, Peking University, China, 2005(in Chinese).
武利庆. 分子印迹聚合物亲和性和选择性的理论预测与调控. 博士学位论文, 北京大学, 2005.
33 Karimian N, Gholivand M B, Taherkhani F. Journal of Electroanalytical Chemistry, 2015, 740, 45.
34 Lu Z W, Du X, Sun M M, et al. Biosensors & Bioelectronics, 2021, 190, 113408.
35 Saloni J, Lipkowski P, Dasary S S R, et al. Polymer, 2011, 52(4), 1206.
36 Madikizela L M, Tavengwa N T, Tutu H, et al. Trends in Environmental Analytical Chemistry, 2018, 17, 14.
37 Xu Z G, Wu Y Q, Hui X. Environmental Earth Sciences, 2013, 68(8), 2189.
38 Wei X, Yu M M, Guo J F. Fibers and Polymers, 2019, 20(3), 459.
39 Rodriguez-Dorado R, Carro A M, Chianella I, et al. Analytical and Bioanalytical Chemistry, 2016, 408(24), 6845.
40 Mankar J S, Sharma M D, Krupadam R J. Journal of Materials Science, 2020, 55(16), 6810.
41 Jiang X, Liu Z, Sun N. Industrial & Engineering Chemistry Research, 2022, 61(34), 12609.
42 Rebelo P, Pacheco J G, Cordeiro M, et al. Analytical Methods, 2020, 12(11), 1486.
43 Feng Y F, Li X, Yang Q R, et al. Journal of Electroanlytical Chemistry, 2023, 928, 117031.
44 Nunes Da Silva D, Leijoto De Oliveira H, Borges K B, et al. Electroanalysis, 2021, 33(2), 506.
45 Elshafey R, Radi A E. Journal of Electroanlytical Chemistry, 2018, 813, 171.
46 Zeb S, Villa J, Wong A, et al. Journal of the Brazilian Chemical Society, 2023, 34(5), 615.
47 Wang K P, Tan L J, Zhang Y W, et al. Marine Pollution Bulletin, 2023, 187, 114587.
48 Dai C M, Jia C Y, Hu J J, et al. Industrial Water Treatment, 2023, 43(1), 1(in Chinese).
代朝猛, 贾辰炎, 胡佳俊, 等. 工业水处理, 2023, 43(1), 1.
49 Li X, Yang B, Xiao K, et al. Water Research, 2021, 203, 117541.
50 Li X, Wan J, Wang Y, et al. Applied Catalysis B-Environmental, 2020, 266, 10.
51 Fiorenza R, Di Mauro A, Cantarella M, et al. Chemical Engineering Journal, 2020, 379, 122309.
[1] 赵岚, 韩颖超. 纳米氢氧化镧磷吸附剂的制备及水体除磷研究[J]. 材料导报, 2025, 39(8): 24010253-7.
[2] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[3] 韩跃鸣, 代朝猛, 段艳平, 刘曙光, 张亚雷. 含过氧键化合物在土壤及地下水PAHs污染修复中的应用进展[J]. 材料导报, 2024, 38(6): 22080204-7.
[4] 朱蓉, 余琼粉, 李明, 樊杰, 陈杰, 李爱民, 李胤凝, 湛丹亚, 王云峰. 吸湿性盐及其复合吸附剂在吸附式空气取水领域的研究进展[J]. 材料导报, 2023, 37(19): 22020322-13.
[5] 李燕, 陈梅芹, 乔艳辉, 康新平. 废白土-花生壳生物炭吸附剂的制备及对Pb(Ⅱ) 的吸附[J]. 材料导报, 2022, 36(6): 20110276-6.
[6] 朋许杰, 李建军, 曹瑞昌, 戎鑫, 李梦, 刘银. 磁性壳聚糖吸附剂的季铵盐改性及磷吸附性能[J]. 材料导报, 2022, 36(21): 21060259-7.
[7] 肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
[8] 冯颖, 李齐雪, 邵娟, 张建伟, 董鑫, 张庆瑾. 基于壳聚糖的分子印迹技术研究及应用[J]. 材料导报, 2022, 36(17): 21040121-8.
[9] 范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 20120056-8.
[10] 宋文琦, 霍文娟, 杨金腾, 罗晨, 訾帅, 刘玉坤, 历亚星, 钱立伟. 氨丙基咪唑离子液体修饰纤维素气凝胶吸附剂对刚果红的清除研究:高性能与吸附机理[J]. 材料导报, 2022, 36(12): 21030276-7.
[11] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[12] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[13] 陶百福, 王志辉, 郭瑞丽. 基材亲疏水性能对EVOH/LIS复合吸附剂成型结构及提锂性能的影响[J]. 材料导报, 2021, 35(6): 6180-6188.
[14] 张莲芝, 吴张永, 王庭有, 朱启晨, 蔡晓明, 莫子勇. 纳米氧化锆多层吸附的模拟及实验研究[J]. 材料导报, 2021, 35(18): 18040-18046.
[15] 代朝猛, 王泽雨, 段艳平, 刘曙光, 涂耀仁, 李彦. 过硫酸盐高级氧化技术在土壤和地下水修复中的研究进展[J]. 材料导报, 2020, 34(Z1): 107-110.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed