Research Progress of Hydroscopic Salt and Its Composite Adsorbents Used for Sorption-based Atmospheric Water Harvesting
ZHU Rong1, YU Qiongfen1,2,*, LI Ming1,2, FAN Jie1, CHEN Jie1, LI Aimin1, LI Yinning1, ZHAN Danya1, WANG Yunfeng1,2
1 Solar Energy Research Institute, Yunnan Normal University, Kunming 650500, China 2 Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming 650500, China
Abstract: In view of the major demand of fresh water resources in arid areas, the sorption-based atmospheric water harvesting technology has become one of the research hotspots in the field of energy as a promising decentralized water supply method. The adsorbents play a key role in the air-water sorption system as a fundamental research part of water harvesting system construction, while there is still a lack of review on salt-based adsorbents in sorption-based atmospheric water harvesting. Based on the latest research progress and key problems of hygroscopic salt and its composite adsorbents, the water vapor sorption-desorption mechanism of salt-based composite sorbent is firstly summarized. Secondly, the performance evaluation indexes such as water uptake capacity, adsorption kinetics, stability and thermodynamic property of hygroscopic materials are introduced, Next, advance in hydroscopic process and desorption methods of different hygroscopic salts and their composite adsorbents for atmospheric water harvesting are systematically summarized. Last, the issues that need further study on salt-based composite adsorbents are highlighted, and some potential solutions are proposed. It naturally follows that the implementation and commercial application of sorption-based atmospheric water harvesting technology can be realized.
通讯作者:
*余琼粉,云南师范大学能源与环境科学学院副教授、博士研究生导师。目前主要从事功能除湿材料、太阳能热利用等相关研究工作。在Chemical Engineering Journal、Renewable Energy、Solar Energy、Journal of Environmental Chemical Enginee-ring、Journal of Building and Environment等杂志发表SCI论文12篇。yqf512xpok@163.com
朱蓉, 余琼粉, 李明, 樊杰, 陈杰, 李爱民, 李胤凝, 湛丹亚, 王云峰. 吸湿性盐及其复合吸附剂在吸附式空气取水领域的研究进展[J]. 材料导报, 2023, 37(19): 22020322-13.
ZHU Rong, YU Qiongfen, LI Ming, FAN Jie, CHEN Jie, LI Aimin, LI Yinning, ZHAN Danya, WANG Yunfeng. Research Progress of Hydroscopic Salt and Its Composite Adsorbents Used for Sorption-based Atmospheric Water Harvesting. Materials Reports, 2023, 37(19): 22020322-13.
1 Oki T, Kanae S. Science, 2006, 313(5790), 1068. 2 Ejeian M, Wang R Z. Joule, 2021, 5(7), 1678. 3 Raveesh G, Goyal R, Tyagi S K. Energy Conversion and Management, 2021, 239, 114226. 4 Peeters R, Vanderschaeghe H, Rongé J, et al. Environmental Science:Water Research & Technology, 2020, 6(8), 2016. 5 Yang K J, Pan T T, Qiong L, et al. Environmental Science & Technology, 2021, 55(10), 6542. 6 Chen Z H, Song S Y, Ma B C, et al. Solar Energy Materials and Solar Cells, 2021, 230, 111233. 7 Wang S N, Chen K, Zheng X. Chemical Industry and Engineering Progress, 2022, 41(7), 12 (in Chinese). 王胜楠, 陈康, 郑旭. 化工进展, 2022, 41(7), 12. 8 Hua L J, Xu J X, Wang R Z. Nano Energy, 2021, 85, 105977. 9 Shan H, Pan Q W, Xiang C J, et al. Cell Reports Physical Science, 2021, 2, 100664. 10 Deng F, Wang C, Xiang C, et al. Nano Energy, 2021, 90, 106642. 11 Zhou X, Lu H, Zhao F, et al. ACS Materials Letters, 2020, 2(7), 671. 12 Xu J X, Li T X, Wang R Z. CIESC Journal, 2016, 67(S2), 348 (in Chinese). 许嘉兴, 李廷贤, 王如竹. 化工学报, 2016, 67(S2), 348. 13 Lu H, Shi W, Guo Y, et al. Advanced Materials, 2022, 34, 2110079. 14 Mauer L J, Taylor L S. Annual Review of Food Science and Technology, 2010, 1, 41. 15 Yu N. Principle and experimental verification of a three-phase sorption cycle for thermal energy storage. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2015(in Chinese). 余楠. 三相吸附储热循环的原理及实验验证. 博士学位论文, 上海交通大学, 2015. 16 Xu J X, Li T X, Yan T S, et al. Energy & Environmental Science, 2021, 14(11), 5979. 17 Donohue M D, Aranovich G L. Advances in Colloid and Interface Science, 1998, 76-77, 137. 18 Jia L J, Yao X H, Ma J K, et al. Microporous and Mesoporous Materials, 2017, 241, 178. 19 Fu G D, Wu P, Yang J G, et al. Microporous and Mesoporous Materials, 2022, 331, 111642. 20 Rafique M M, Gandhidasan P, Bahaidarah H M S. Renewable and Sustainable Energy Reviews, 2016, 56, 179. 21 Qi H S, Wei T Q, Zhao W, et al. Advanced Materials, 2019, 31(43), 1903378. 22 An M Y, Wang J B, Xu Z Y, et al. CIESC Journal, 2021, 72(S1), 70 (in Chinese). 安美燕, 王洁冰, 徐震原, 等. 化工学报, 2021, 72(S1), 70. 23 Yu Q F, Zhao H R, Sun S N, et al. Renewable Energy, 2019, 138, 1087. 24 Yuan Y P, Zhang H Q, Yang F, et al. Renewable and Sustainable Energy Reviews, 2016, 54, 761. 25 Ge X J. Refrigeration, 2018, 37(1), 24 (in Chinese). 葛晓洁. 制冷, 2018, 37(1), 24. 26 Zheng X, Gg T S, Wang R Z, et al. Chemical Engineering Science, 2014, 120, 1. 27 Okada K, Nakanome M, Kameshima Y, et al. Materials Research Bulletin, 2010, 45, 1549. 28 Yu Q F, Zhao H R, Sun S N, et al. Renewable Energy, 2019, 138, 1087. 29 Zhao H Z, Lei M, Liu T, et al. Inorganica Chimica Acta, 2020, 511, 119842. 30 Permyakova A, Wang S, Courbon E, et al. Journal of Materials Chemistry A, 2017, 5(25), 12889. 31 Xu J X, Li T X, Chao J W, et al. Angewandte Chemie International Edition, 2020, 59(13), 5202. 32 Entezari A, Ejeian M, Wang R Z. Applied Thermal Engineering, 2019, 161, 114109. 33 Li R, Shi Y, Alsaedi M, et al. Environmental Science & Technology, 2018, 52(19), 11367. 34 Kallenberger P A, Fröba M. Communications Chemistry, 2018, 1, 28. 35 Entezari A, Ejeian M, Wang R Z. ACS Materials Letters, 2020, 2(5), 471. 36 Irshad M S, Arshad N, Wang X B. Global Challenges, 2021, 5(1), 2000055. 37 Mulchandani A, Malinda S, Edberg J, et al. Environmental Science:Nano, 2020, 7(9), 2584. 38 Kim S Y, Liang Y J, Kang S, et al. Chemical Engineering Journal, 2021, 425, 131601. 39 Yang K J, Shi Y S, Wu M C, et al. Journal of Materials Chemistry A, 2020, 8(4), 1887. 40 Li R Y, Shi Y S, Wu M, et al. Nano Energy, 2020, 67, 104255. 41 Yan X T, Jin Y K, Chen X M, et al. Science China Physics, Mechanics & Astronomy, 2019, 63, 224601. 42 Chen Q, Fang C H, Wang G, et al. Scientific Reports, 2021, 11(1), 12714. 43 Gong F, Li H, Zhou Q, et al. Nano Energy, 2020, 74, 104922. 44 Entezari A, Ejeian M, Wang R Z. Materials Today Energy, 2019, 13, 362. 45 Wang J Y, Liu J Y, Wang R Z, et al. Applied Thermal Engineering, 2017, 121, 941. 46 Zhao H Z, Zhang Z Z, Hou H W, et al. Journal of Solid State Chemistry, 2021, 301, 122304. 47 Deng C H, Wang J Y, Li J F, et al. CIESC Journal, 2021, 72(8), 4401 (in Chinese). 邓超和, 王佳韵, 李金凤, 等. 化工学报, 2021, 72(8), 4401. 48 Lu H Y, Shi W, Zhang J H, et al. Advanced Materials, DOI:10. 1002/adma. 202205344. 49 Wang J Y, Wang R Z, Wang L W, et al. Energy, 2017, 138, 542. 50 Wang J Y, Wang R Z, Tu Y D, et al. Energy, 2018, 165, 387. 51 Yang W S, Guo H H, Wang Z Y, et al. China Academic Journal Electronic Publishing House, 2013, 40(2), 71 (in Chinese). 杨晚生, 郭黄欢, 王璋元, 等. 新型建筑材料, 2013, 40(2), 71. 52 Zheng Q R, Pan Q Y, Xie C, et al. Ship Engineering, 2011, 33(3), 30 (in Chinese). 郑青榕, 潘其永, 解晨, 等. 船舶工程, 2011, 33(3), 30. 53 Wang J Y. Research on principle and system of atmosphere water harvesting unit based on active carbon fiber composite material. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2018 (in Chinese). 王佳韵. 基于复合活性炭纤维材料的吸附式空气取水原理与系统. 博士学位论文, 上海交通大学, 2018. 54 Zhang Y F, Wu L, Wang X F, et al. Nature Communications, 2020, 11(1), 3302. 55 Wang M Z, Sun T M, Wan D H, et al. Nano Energy, 2021, 80, 105569. 56 Lapotin A, Zhong Y, Zhang L N, et al. Joule, 2021, 4, 1. 57 Ma Q L, Zheng X. Chemical Engineering Journal, 2022, 429, 132498. 58 Guo Z, Li K, Wu Y, et al. Microporous and Mesoporous Materials, 2021, 328. 59 Eslami M, Tajeddini F, Etaati N. Energy Conversion and Management, 2018, 174, 417. 60 Hao X Y, Geng S B, Yuan L. Yangtze River, 2016, 47(S2), 30 (in Chinese). 郝秀渊, 耿世彬, 袁丽. 人民长江, 2016, 47(S2), 30. 61 Feng Y H, Ge T S, Chen B, et al. Cell Reports Physical Science, 2021, 2(9), 100561. 62 Tao Y L, Wu Q N, Huang C, et al. Chemical Engineering Journal, 2023, 451, 138547. 63 Tao Y L, Wu Q N, Huang C, et al. ACS Applied Materials & Interfaces, 2022, 14(8), 10966. 64 Li Q Q, Ying Y F, Tao Y L, et al. Industrial & Engineering Chemistry Research, 2022, 61(3), 1344.