Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22020322-13    https://doi.org/10.11896/cldb.22050322
  无机非金属及其复合材料 |
吸湿性盐及其复合吸附剂在吸附式空气取水领域的研究进展
朱蓉1, 余琼粉1,2,*, 李明1,2, 樊杰1, 陈杰1, 李爱民1, 李胤凝1, 湛丹亚1, 王云峰1,2
1 云南师范大学太阳能研究所,昆明 650500
2 云南省高校太阳能供热与制冷重点实验室,昆明 650500
Research Progress of Hydroscopic Salt and Its Composite Adsorbents Used for Sorption-based Atmospheric Water Harvesting
ZHU Rong1, YU Qiongfen1,2,*, LI Ming1,2, FAN Jie1, CHEN Jie1, LI Aimin1, LI Yinning1, ZHAN Danya1, WANG Yunfeng1,2
1 Solar Energy Research Institute, Yunnan Normal University, Kunming 650500, China
2 Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming 650500, China
下载:  全 文 ( PDF ) ( 28974KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 空气取水是解决世界水资源短缺问题的有效途径。同时,吸附式空气取水技术作为一种很有前途的分散供水方式,已成为能源领域的研究热点之一。其中,吸湿剂作为取水系统构建中的基础研究部分,在空气-水吸附系统中起着关键作用,但针对吸附式空气取水中盐基吸附剂的评述仍有欠缺。为此,本文立足于吸湿性盐及其复合吸附剂在空气取水领域的最新研究,总结了盐基吸附剂的水蒸气吸附-解吸机理;概述了吸湿剂的性能评价指标,包括平衡吸附量、吸附动力学、循环稳定性及热力学性质;对不同类型的盐基吸附剂在空气取水领域中的吸湿过程和解吸方法进行了系统性的总结与评价;指出了盐基吸附剂在吸附式空气取水中所面临的问题与挑战,并提出了一些潜在的解决方案,从而推动吸附式空气取水技术的落地实施与商业化应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱蓉
余琼粉
李明
樊杰
陈杰
李爱民
李胤凝
湛丹亚
王云峰
关键词:  吸附式空气取水  吸湿性盐  盐基复合吸附剂  吸附  解吸    
Abstract: In view of the major demand of fresh water resources in arid areas, the sorption-based atmospheric water harvesting technology has become one of the research hotspots in the field of energy as a promising decentralized water supply method. The adsorbents play a key role in the air-water sorption system as a fundamental research part of water harvesting system construction, while there is still a lack of review on salt-based adsorbents in sorption-based atmospheric water harvesting. Based on the latest research progress and key problems of hygroscopic salt and its composite adsorbents, the water vapor sorption-desorption mechanism of salt-based composite sorbent is firstly summarized. Secondly, the performance evaluation indexes such as water uptake capacity, adsorption kinetics, stability and thermodynamic property of hygroscopic materials are introduced, Next, advance in hydroscopic process and desorption methods of different hygroscopic salts and their composite adsorbents for atmospheric water harvesting are systematically summarized. Last, the issues that need further study on salt-based composite adsorbents are highlighted, and some potential solutions are proposed. It naturally follows that the implementation and commercial application of sorption-based atmospheric water harvesting technology can be realized.
Key words:  sorption-based atmospheric water harvesting    hydroscopic salt    salt-based composite adsorbent    adsorption    desorption
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TU991.11+4  
  TQ424  
  TV213  
  TK519  
基金资助: 国家自然科学基金(21965040;51866017);云南省教育厅基金研究生项目(2022Y191)
通讯作者:  *余琼粉,云南师范大学能源与环境科学学院副教授、博士研究生导师。目前主要从事功能除湿材料、太阳能热利用等相关研究工作。在Chemical Engineering Journal、Renewable Energy、Solar Energy、Journal of Environmental Chemical Enginee-ring、Journal of Building and Environment等杂志发表SCI论文12篇。yqf512xpok@163.com   
作者简介:  朱蓉,现为云南师范大学能源与环境科学学院本硕连读生,在余琼粉副教授的指导下进行研究。目前主要研究领域为除湿和取水功能材料。
引用本文:    
朱蓉, 余琼粉, 李明, 樊杰, 陈杰, 李爱民, 李胤凝, 湛丹亚, 王云峰. 吸湿性盐及其复合吸附剂在吸附式空气取水领域的研究进展[J]. 材料导报, 2023, 37(19): 22020322-13.
ZHU Rong, YU Qiongfen, LI Ming, FAN Jie, CHEN Jie, LI Aimin, LI Yinning, ZHAN Danya, WANG Yunfeng. Research Progress of Hydroscopic Salt and Its Composite Adsorbents Used for Sorption-based Atmospheric Water Harvesting. Materials Reports, 2023, 37(19): 22020322-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050322  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22020322
1 Oki T, Kanae S. Science, 2006, 313(5790), 1068.
2 Ejeian M, Wang R Z. Joule, 2021, 5(7), 1678.
3 Raveesh G, Goyal R, Tyagi S K. Energy Conversion and Management, 2021, 239, 114226.
4 Peeters R, Vanderschaeghe H, Rongé J, et al. Environmental Science:Water Research & Technology, 2020, 6(8), 2016.
5 Yang K J, Pan T T, Qiong L, et al. Environmental Science & Technology, 2021, 55(10), 6542.
6 Chen Z H, Song S Y, Ma B C, et al. Solar Energy Materials and Solar Cells, 2021, 230, 111233.
7 Wang S N, Chen K, Zheng X. Chemical Industry and Engineering Progress, 2022, 41(7), 12 (in Chinese).
王胜楠, 陈康, 郑旭. 化工进展, 2022, 41(7), 12.
8 Hua L J, Xu J X, Wang R Z. Nano Energy, 2021, 85, 105977.
9 Shan H, Pan Q W, Xiang C J, et al. Cell Reports Physical Science, 2021, 2, 100664.
10 Deng F, Wang C, Xiang C, et al. Nano Energy, 2021, 90, 106642.
11 Zhou X, Lu H, Zhao F, et al. ACS Materials Letters, 2020, 2(7), 671.
12 Xu J X, Li T X, Wang R Z. CIESC Journal, 2016, 67(S2), 348 (in Chinese).
许嘉兴, 李廷贤, 王如竹. 化工学报, 2016, 67(S2), 348.
13 Lu H, Shi W, Guo Y, et al. Advanced Materials, 2022, 34, 2110079.
14 Mauer L J, Taylor L S. Annual Review of Food Science and Technology, 2010, 1, 41.
15 Yu N. Principle and experimental verification of a three-phase sorption cycle for thermal energy storage. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2015(in Chinese).
余楠. 三相吸附储热循环的原理及实验验证. 博士学位论文, 上海交通大学, 2015.
16 Xu J X, Li T X, Yan T S, et al. Energy & Environmental Science, 2021, 14(11), 5979.
17 Donohue M D, Aranovich G L. Advances in Colloid and Interface Science, 1998, 76-77, 137.
18 Jia L J, Yao X H, Ma J K, et al. Microporous and Mesoporous Materials, 2017, 241, 178.
19 Fu G D, Wu P, Yang J G, et al. Microporous and Mesoporous Materials, 2022, 331, 111642.
20 Rafique M M, Gandhidasan P, Bahaidarah H M S. Renewable and Sustainable Energy Reviews, 2016, 56, 179.
21 Qi H S, Wei T Q, Zhao W, et al. Advanced Materials, 2019, 31(43), 1903378.
22 An M Y, Wang J B, Xu Z Y, et al. CIESC Journal, 2021, 72(S1), 70 (in Chinese).
安美燕, 王洁冰, 徐震原, 等. 化工学报, 2021, 72(S1), 70.
23 Yu Q F, Zhao H R, Sun S N, et al. Renewable Energy, 2019, 138, 1087.
24 Yuan Y P, Zhang H Q, Yang F, et al. Renewable and Sustainable Energy Reviews, 2016, 54, 761.
25 Ge X J. Refrigeration, 2018, 37(1), 24 (in Chinese).
葛晓洁. 制冷, 2018, 37(1), 24.
26 Zheng X, Gg T S, Wang R Z, et al. Chemical Engineering Science, 2014, 120, 1.
27 Okada K, Nakanome M, Kameshima Y, et al. Materials Research Bulletin, 2010, 45, 1549.
28 Yu Q F, Zhao H R, Sun S N, et al. Renewable Energy, 2019, 138, 1087.
29 Zhao H Z, Lei M, Liu T, et al. Inorganica Chimica Acta, 2020, 511, 119842.
30 Permyakova A, Wang S, Courbon E, et al. Journal of Materials Chemistry A, 2017, 5(25), 12889.
31 Xu J X, Li T X, Chao J W, et al. Angewandte Chemie International Edition, 2020, 59(13), 5202.
32 Entezari A, Ejeian M, Wang R Z. Applied Thermal Engineering, 2019, 161, 114109.
33 Li R, Shi Y, Alsaedi M, et al. Environmental Science & Technology, 2018, 52(19), 11367.
34 Kallenberger P A, Fröba M. Communications Chemistry, 2018, 1, 28.
35 Entezari A, Ejeian M, Wang R Z. ACS Materials Letters, 2020, 2(5), 471.
36 Irshad M S, Arshad N, Wang X B. Global Challenges, 2021, 5(1), 2000055.
37 Mulchandani A, Malinda S, Edberg J, et al. Environmental Science:Nano, 2020, 7(9), 2584.
38 Kim S Y, Liang Y J, Kang S, et al. Chemical Engineering Journal, 2021, 425, 131601.
39 Yang K J, Shi Y S, Wu M C, et al. Journal of Materials Chemistry A, 2020, 8(4), 1887.
40 Li R Y, Shi Y S, Wu M, et al. Nano Energy, 2020, 67, 104255.
41 Yan X T, Jin Y K, Chen X M, et al. Science China Physics, Mechanics & Astronomy, 2019, 63, 224601.
42 Chen Q, Fang C H, Wang G, et al. Scientific Reports, 2021, 11(1), 12714.
43 Gong F, Li H, Zhou Q, et al. Nano Energy, 2020, 74, 104922.
44 Entezari A, Ejeian M, Wang R Z. Materials Today Energy, 2019, 13, 362.
45 Wang J Y, Liu J Y, Wang R Z, et al. Applied Thermal Engineering, 2017, 121, 941.
46 Zhao H Z, Zhang Z Z, Hou H W, et al. Journal of Solid State Chemistry, 2021, 301, 122304.
47 Deng C H, Wang J Y, Li J F, et al. CIESC Journal, 2021, 72(8), 4401 (in Chinese).
邓超和, 王佳韵, 李金凤, 等. 化工学报, 2021, 72(8), 4401.
48 Lu H Y, Shi W, Zhang J H, et al. Advanced Materials, DOI:10. 1002/adma. 202205344.
49 Wang J Y, Wang R Z, Wang L W, et al. Energy, 2017, 138, 542.
50 Wang J Y, Wang R Z, Tu Y D, et al. Energy, 2018, 165, 387.
51 Yang W S, Guo H H, Wang Z Y, et al. China Academic Journal Electronic Publishing House, 2013, 40(2), 71 (in Chinese).
杨晚生, 郭黄欢, 王璋元, 等. 新型建筑材料, 2013, 40(2), 71.
52 Zheng Q R, Pan Q Y, Xie C, et al. Ship Engineering, 2011, 33(3), 30 (in Chinese).
郑青榕, 潘其永, 解晨, 等. 船舶工程, 2011, 33(3), 30.
53 Wang J Y. Research on principle and system of atmosphere water harvesting unit based on active carbon fiber composite material. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2018 (in Chinese).
王佳韵. 基于复合活性炭纤维材料的吸附式空气取水原理与系统. 博士学位论文, 上海交通大学, 2018.
54 Zhang Y F, Wu L, Wang X F, et al. Nature Communications, 2020, 11(1), 3302.
55 Wang M Z, Sun T M, Wan D H, et al. Nano Energy, 2021, 80, 105569.
56 Lapotin A, Zhong Y, Zhang L N, et al. Joule, 2021, 4, 1.
57 Ma Q L, Zheng X. Chemical Engineering Journal, 2022, 429, 132498.
58 Guo Z, Li K, Wu Y, et al. Microporous and Mesoporous Materials, 2021, 328.
59 Eslami M, Tajeddini F, Etaati N. Energy Conversion and Management, 2018, 174, 417.
60 Hao X Y, Geng S B, Yuan L. Yangtze River, 2016, 47(S2), 30 (in Chinese).
郝秀渊, 耿世彬, 袁丽. 人民长江, 2016, 47(S2), 30.
61 Feng Y H, Ge T S, Chen B, et al. Cell Reports Physical Science, 2021, 2(9), 100561.
62 Tao Y L, Wu Q N, Huang C, et al. Chemical Engineering Journal, 2023, 451, 138547.
63 Tao Y L, Wu Q N, Huang C, et al. ACS Applied Materials & Interfaces, 2022, 14(8), 10966.
64 Li Q Q, Ying Y F, Tao Y L, et al. Industrial & Engineering Chemistry Research, 2022, 61(3), 1344.
[1] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[2] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[3] 李娅, 马飞跃, 张明, 涂行浩, 杜丽清. 不同尺寸改性果胶基磁性微球的制备及对Pb2+吸附性能的研究[J]. 材料导报, 2023, 37(9): 21050165-8.
[4] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[5] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[6] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[7] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[8] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[9] 宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 21070249-7.
[10] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[11] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[12] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[13] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[14] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[15] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed