Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21110052-10    https://doi.org/10.11896/cldb.21110052
  无机非金属及其复合材料 |
污水重金属离子选择性吸附的研究进展
周爱玲, 贾爱忠*, 赵新强, 王延吉
河北工业大学化工学院,绿色化工与高效节能河北省重点实验室,天津 300130
Research Progress on Selective Adsorption of Heavy Metal Ions in Sewage
ZHOU Ailing, JIA Aizhong*, ZHAO Xinqiang, WANG Yanji
Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
下载:  全 文 ( PDF ) ( 2958KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 重金属离子因具有生物不可降解性,对水环境系统和生态体系的污染严重威胁人类及其他动物的生命安全,已受到广泛关注。吸附法是一种操作简单、方便有效的方法,在污水重金属离子去除领域得到广泛研究,但多数工作主要关注吸附性能和去除效果。近年来,人们开始重视对污水中金属离子的回收再利用,因为这不仅能够缓解或解决环境污染,还可以实现废物的资源化利用,而吸附剂的选择性对目标金属离子的回收利用效果具有决定性作用。本文从软硬酸碱理论(HSAB)、离子印迹技术以及其他影响因素三个方面论述了污水中重金属离子选择性吸附的研究进展,详细总结了改善吸附剂选择性的方法并分析了当前存在的问题,最后对金属离子选择性吸附研究的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周爱玲
贾爱忠
赵新强
王延吉
关键词:  重金属离子  软硬酸碱理论  离子印迹  选择性吸附    
Abstract: The pollution of heavy metal ions on the water environment and ecological effect has posed a serious threat to human and animal health due to their non-biodegradability. Therefore, humans have widely concerned about that problem. The adsorption method is a simple, conve-nient, and highly efficient method for removing metal ions from sewage, and a lot of research work has been done in this field, but most of them mainly focus on adsorption performance and removal efficiency. In recent years, some researchers begin to pay attention to the recycling and reuse of metal ions in sewage because it can not only resolve the problem of sewage but also facilitate the resource utilization of waste, giving a great significance. Moreover, the selectivity of the adsorbents plays a key role in the recycling of target metal ions. In this paper, we review the research progress of selective adsorption of heavy metal ions in sewage from three aspects of hard and soft acid-base theory (HSAB), ion imprinting technique,other influencing factors, and summarize the methods and the remaining problems of improving the selective properties of adsorbents in detail. Finally, we prospect the future development direction of selective adsorption of metal ions.
Key words:  heavy metal ion    hard and soft acid-base theory    ion imprinting    selective adsorption
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TQ424  
基金资助: 国家自然科学基金(21236001; 21076058); 中央引导地方科技发展资金项目(216Z3701G); 天津市自然科学基金(15JCYBJC21000;18JCYBJC42600); 河北省高校科学研究项目(QN2016152)
通讯作者:  *贾爱忠,河北工业大学化工学院副教授、硕士研究生导师,2017年河北省优秀出国培训专家。2007年12月南开大学化学学院博士毕业,2008年2月—2010年6月在南开大学环境科学与技术学院进行博士后研究工作,博士后出站后在河北工业大学工作至今。2018年9月—2019年9月在比利时那慕尔大学国际著名多孔材料、生命复合材料和催化领域专家苏宝莲教授课题组访学一年。目前主要从事多孔材料设计合成、结构调控、表面改性及在绿色催化过程与工艺开发、能源环境资源综合利用等方面的研究工作。发表科技论文40余篇,其中研究成果单篇引用超百次,申请发明专利10余项,已授权7项。azhjia@hebut.edu.cn   
作者简介:  周爱玲,2018年6月毕业于河南师范大学,获得工学学士学位。现为河北工业大学化工学院硕士研究生,在贾爱忠副教授的指导下进行研究。目前主要研究领域为多孔材料的制备及对重金属离子选择性吸附性能的研究。
引用本文:    
周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
ZHOU Ailing, JIA Aizhong, ZHAO Xinqiang, WANG Yanji. Research Progress on Selective Adsorption of Heavy Metal Ions in Sewage. Materials Reports, 2023, 37(9): 21110052-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110052  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21110052
1 Vakili M, Rafatullah M, Salamatinia B, et al. Carbohydrate Polymers, 2014, 113, 115.
2 Reddy D H K, Lee S M. Advances in Colloid & Interface Science, 2013, 201-202(4), 68.
3 Chen Y B, Tang J L, Wang S X, et al. International Journal of Biological Macromolecules, 2021, 177, 29.
4 Gao X P, Guo C, Hao J J, et al. International Journal of Biological Macromolecules, 2020, 164, 4423.
5 Lei Z, Zeng Y X, Cheng Z J. Journal of Molecular Liquids, 2016, 214, 175.
6 Pontoni L, Fabbricino M. Carbohydrate Research, 2012, 356(3), 86.
7 Wu Z X, Zhao D Y. Chemical Communications (Cambridge, England), 2011, 47(12), 3332.
8 Wen J, Fang Y, Zeng G M. Chemosphere, 2018, 201, 627.
9 Chowdhury S, Balasubramanian R. Advances in Colloid and Interface Science, 2014, 204(1), 35.
10 Pearson R G. Journal of the American Chemical Society, 1963, 85, 3533.
11 Shin K Y, Hong J Y, Jang J. Journal of Hazardous Materials, 2011, 190(1-3), 36.
12 Liu A M, Hidajat K, Kawi S, et al. Chemical Communications, 2000,230(13), 1145.
13 Antochshuk V, Olkhovyk O, Jaroniec M, et al. Langmuir, 2003, 19(7), 3031.
14 Liebscher J, MrÓwczyńskir, Scheidt H A, et al. Langmuir, 2013, 29(33), 10539.
15 Zhao X L, Zheng J, You S, et al. Processes, 2021, 9, 790.
16 Zhang Q R, Li Y X, Yang Q G, et al. Journal of Hazardous Materials, 2018, 342, 732.
17 Liang Q W, Luo H J, Geng J J, et al. Chemical Engineering Journal, 2018, 338, 62.
18 Li K, Li P, Cai J, et al. Chemosphere, 2016, 154, 310.
19 Huang S H, Chen D H. Journal of Hazardous Materials, 2009, 163(1), 174.
20 Oyetade O A, Skelton A A, Nyamori V O, et al. Separation and Purification Technology, 2017, 188, 174.
21 Hamza M F, Wei Y Z, Mira H I, et al. Chemical Engineering Journal, 2019, 362, 310.
22 Chen Y B, Tang J L, Wang S X, et al. International Journal of Biological Macromolecules, 2021, 177, 29.
23 Gao C, Wang X L, An Q D, et al. Carbohydrate Polymers, 2021, 256, 117564.
24 Kong X F, Yang B, Xiong H, et al. Journal of Central South University, 2014, 21(9), 3575.
25 Wang Q, Feng J, Ma L R, et al. Journal of Materials Science, 2016, 51(20), 9472.
26 Luo S L, Xu X L, Zhou G Y, et al. Journal of Hazardous Materials, 2014, 274, 145.
27 Li P G, Wang J X, Li X T, et al. Journal of Hazardous Materials, 2019, 378, 120664. 1.
28 Gupta R, Gupta S K, Pathak D D. Microporous and Mesoporous Materials, 2019, 288, 109577.
29 Liu M, Jia L D, Zhao Z X, et al. Chemical Engineering Journal, 2020, 390, 124667.
30 Gu S M, Wang L, Mao X Y, et al. Materials, 2018, 11(4), 514.
31 Xiong C, Wang S X, Sun W T, et al. Microchemical Journal, 2019, 146, 270.
32 Bo S F, Luo J M, An Q D, et al. Journal of Cleaner Production, 2020, 250, 119585. 1.
33 Huang D Q, Chen L, Wan J Y, et al. Guangzhou Chemical Industry, 2005, 33(6), 36(in Chinese).
黄达卿, 陈亮, 弯军英, 等. 广州化工, 2005, 33(6), 36.
34 Kampalanonwat P, Supaphol P. Energy Procedia, 2014, 56, 142.
35 Shen C, Chang Y, Fang L, et al. New Journal of Chemistry, 2016, 40(4), 3588.
36 Chen J, Qu R J, Zhang Y, et al. Chemical Engineering Journal, 2012, 209, 235.
37 Zeng H H, Wang L, Zhang D, et al. Chemical Engineering Journal, 2019, 358, 253.
38 Wang F, Zheng Y A, Zhu Y F, et al. Water Air and Soil Pollution, 2016, 227(4), 110.
39 Xiong C H, LiY L, Wang G T, et al. Chemical Engineering Journal, 2015, 259, 257.
40 Guibal E. Separation & Purification Technology, 2004, 38(1), 43.
41 Wang J, Deng B L, Chen H, et al. Environmental Science & Technology, 2009, 43, 5223.
42 Pei L Y, Shrvin K, Diana N H T, et al. ACS Applied Materials & Interfaces, 2019, 11(6), 6350.
43 Dias F N L, Carmo D R. Talanta, 2006, 68(3), 919.
44 Xiong C H, Jia Q, Chen X Y, et al. Industrial & Engineering Chemistry Research, 2013, 52(14), 4978.
45 Hou C, Zhao D Y, Zhang S F, et al. Colloid and Polymer Science, 2018, 296(3), 547.
46 Fan L, Zhou A L, Zhong L R, et al. Chemosphere, 2019, 226, 405.
47 Zhao M H, Huang Z, Wang S, et al. Chemical Engineering Journal, 2020, 401, 126006.
48 Wang S M, Li H L, Chen X Y, et al. Journal of Environmental Sciences, 2012, 24(12), 2166.
49 Liu C P, Sun L, Ma S M, et al. Ion Exchange and Adsorption, 2009, 25(3), 265(in Chinese).
刘春萍, 孙琳, 马松梅, 等. 离子交换与吸附, 2009, 25(3), 265.
50 Liu X, Yang L M, Luo X B, et al. Chemical Engineering Journal, 2018, 348, 224.
51 Huang Y J, Zhao W C, Zhang X, et al. Chemical Engineering Journal, 2019, 375, 121935.
52 Celik Z, GÜlfen M, Aydin A O. Journal of Hazardous Materials, 2010, 174(1-3), 556.
53 Roto R, Yusran Y, Kuncaka A. Applied Surface Science, 2016, 377, 30.
54 Andrea K, Kunawoot J, Fuangfa U, et al. Journal of Colloid and Interface Science, 2009, 338(2), 359.
55 Zheng H J, Hu D H, Zhang L, et al. Minerals Engineering, 2012, 35, 20.
56 Gao X P, Zhang Y, Zhao Y M. Carbohydrate Polymers, 2018, 200, 297.
57 Kang Z R, Chen W J, Jiang S B, et al. Precious Metals, 1996, 17(2), 22(in Chinese).
康忠镕, 陈文浚, 蒋树斌, 等. 贵金属, 1996, 17(2), 22.
58 Zhou L M, Liu J H, Liu Z R. Journal of Hazardous Materials, 2009, 172(1), 439.
59 Tao X C, Feng Q. Journal of Textile Research, 2017, 38(3), 13 (in Chinese).
陶旭晨, 凤权. 纺织学报, 2017, 38(3), 13.
60 Nakayma H, Hirami S, Tsuhako M. Journal of Colloid & Interface Science, 2007, 315(1), 177.
61 Ali J, Wang H B, Ifthikar J, etal. Chemical Engineering Journal, 2018, 332, 387.
62 Masjedi A, Askarizadeh E, Baniyaghoob S. Materials Chemistry and Physics, 2020, 249, 122917.
63 Liu Y M, Wang R, Bai J H, et al. Colloids and Surfaces A:Physicoche-mical and Engineering Aspects, 2019, 577, 674.
64 Lee S H, Park S S, Parambadath S, et al. Microporous and Mesoporous Materials, 2016, 226, 179.
65 Feng M L, Sarma D, Qi X H, et al. Journal of the American Chemical Society, 2016, 138(38), 12578.
66 Ma S L, Huang L, Ma L J, et al. Journal of the American Chemical Society, 2015, 137(10), 3670.
67 Hao Z L, Cai Y M, Wang Y, et al. Journal of Colloid and Interface Science, 2020, 564, 428.
68 Wang F, Lu X W, Li X Y. Journal of Hazardous Materials, 2016, 308, 75.
69 Hu Z H, Omer A M, Ouyang X K, et al. International Journal of Biolo-gical Macromolecules, 2018, 108, 149.
70 Liu P, Jiang L P, Zhu L X, et al. Reactive & Functional Polymers, 2014, 74, 72.
71 Jiang L P, Liu P. Industrial & Engineering Chemistry Research, 2014, 53(8), 2924.
72 Sahraei R, Pour Z S, Ghaemy M. Journal of Cleaner Production, 2017, 142, 2973.
73 Ma Y L, Lv L, Guo Y R, et al. Polymer, 2017, 128, 12.
74 Badruddoza A Z M, Shawon Z B Z, Tay W J D, et al. Carbohydrate Polymers, 2013, 91(1), 322.
75 Zeng Q, Huang Y J, Huang L M, et al. Chemosphere, 2020, 253, 126650.
76 Baiya C, Nannuan L, Tassanapukdee Y, et al. Environmental Progress & Sustainable Energy, 2019, 38(s1), S157.
77 Badruddoza A Z M, Tay A S H, Tan P Y, et al. Journal of Hazardous Materials, 2011, 185(2-3), 1177.
78 Birajdar R M S, Lee J. Journal of Industrial and Engineering Chemistry, 2019, 77, 303.
79 Yan H, Dai J, Yang Z, et al. Chemical Engineering Journal, 2011, 174(2-3), 586.
80 Kampalanonwat P, Supaphol P. Industrial & Engineering Chemistry Research, 2011, 50(21), 11912.
81 Lee S, Jeong Y, Yoon Y, et al. Polymer Degradation and Stability, 2017, 143, 207.
82 Deng J Q, Liu Y G, Liu S B, et al. Journal of Colloid and Interface Science, 2017, 506, 355.
83 Lu Y, Wu Z H, Li M F, et al. Reactive and Functional Polymers, 2014, 82, 98.
84 An F Q, Wu R Y, Li M, et al. Reactive and Functional Polymers, 2017, 118, 42.
85 Zhao L S, Liang C, Li S S, et al. Journal of Cleaner Production, 2021, 303, 127114.
86 Liu Q, Qu L B, Ren B Z. Journal of Dispersion Science and Technology, 2019, 41(8), 1.
87 Chen C Y, Chiang C L, Huang P C. Separation and Purification Technology, 2006, 50, 15.
88 Shibahara R, Kamiya K, Nishina Y. Nanoscale Advances, 2021, 3, 5823.
89 Hughes M A, Rosenberg E. Separation Science and Technology, 2007, 42, 261.
90 Ma Z X, Li F, Jia A Z, et al. Journal of Porous Materials, 2021, 28, 299.
91 Ren Y, Abbood H A, He F B, et al. Chemical Engineering Journal, 2013, 226, 300.
92 Chen S J, Xie F C. Applied Surface Science, 2020, 507, 145090.
93 Fan X B, Wang X H, Cai Y T, et al. Journal of Hazardous Materials, 2022, 423, 127191.
94 Wu D, Hu L H, Wang Y G, et al. Journal of Colloid and Interface Science, 2018, 523, 56.
95 Wu J, Zhou J, Zhang S W, et al. Journal of Colloid and Interface Science, 2019, 555, 403.
96 Lian Z W, Li Y F, Xian H Y, et al. International Journal of Biological Macromolecules, 2020, 165, 591.
97 Yang L Q, Li Y F, Wang L Y, et al. Journal of Hazardous Materials, 2010, 180, 98.
98 Mehta V S, Maillot F, Wang Z M, et al. Environmental Science & Technology, 2016, 50(6), 3128.
99 Liu X, Li J X, Wang X X, et al. Journal of Nuclear Materials, 2015, 466, 56.
100 Deng S, Yu C X, Niu J F, et al. Chemical Engineering Journal, 2020, 392, 123815.
101 Cai Y W, Wu C F, Liu Z Y, et al. Environmental Science-Nano, 2017, 4(9), 1876.
102 Dong H, Wen J, Lu X R. Journal of Sichuan University(Natural Science Edition), 2020, 57(1), 163(in Chinese).
董浩, 文君, 卢喜瑞. 四川大学学报(自然科学版), 2020, 57(1), 163.
103 Wang C, Zhao J L, Wang S X, et al. Polymers (basel), 2019, 11(4), 652.
104 Lu Q Y, Ma Y C, Li H, et al. Angewandte Chemie International Edition, 2018, 130(21), 6150.
105 Gao X P, Liu J, Li M Y, et al. Chemical Engineering Journal, 2019, 378, 122096.
106 Xu G, Wang L, Xie Y J, et al. Journal of Hazardous Materials, 2018, 344, 679.
107 Liu P, Borrell P F, Božičm M, et al. Journal of Hazardous Materials, 2015, 294, 177.
108 Zhao J J, Niu Y Z, Ren B, et al. Chemical Engineering Journal, 2018, 347, 574.
109 Moradinasab S, Behzad M. Desalination and Water Treatment, 2016, 57(9), 4028.
110 Setoodehkhah M, Momeni S. Journal of Inorganic & Organometallic Polymers & Materials, 2017, 28(3), 1098.
111 Zhou J X, Gao F Q, Jiao T F, et al. Colloids & Surfaces A Physicoche-mical & Engineering Aspects, 2018, 545, 60.
112 Awual M R, Eldesoky G E, Yaita T, et al. Chemical Engineering Journal, 2015, 279, 639.
113 Yuvaraja G, Venkata S M. International Journal of Biological Macromolecules, 2016, 93, 408.
114 Ahmed S, Hassan H, Azzazy H, et al. Chemical Engineering Journal, 2018, 332, 337.
115 Awual M R, Hasan M M, Islam A, et al. Journal of Cleaner Production, 2019, 231, 214.
116 Awual M R. Journal of Molecular Liquids, 2019, 284, 502.
117 Awual M R. Materials Science & Engineering, 2019, 101, 686.
118 Awual M R. Journal of Environmental Chemical Engineering, 2019, 7(3), 103087.
119 Awual M R, Hasan M M, Rahman M M, et al. Journal of Molecular Liquids, 2019, 283, 772.
120 Awual M R, Hasan M M, Khaleque M A, et al. Chemical Engineering Journal, 2016, 288, 368.
121 Awual M R. Chemical Engineering Journal, 2017, 307, 85.
122 Awual M R. Composites Part B:Engineering, 2019, 172, 387.
123 Awual M R, Yaita T, El-Safiy S A, et al. Chemical Engineering Journal, 2013, 221, 322.
124 Awual M R, Rahman I M M, Yaita T, et al. Chemical Engineering Journal, 2014, 236, 100.
125 Awual M R. Chemical Engineering Journal, 2017, 307, 456.
126 Awual M R, Hasan M M, Eldesoky G E, et al. Chemical Engineering Journal, 2016, 290, 243.
127 Awual M R, Hasan M M, Asiri A M, et al. Journal of Molecular Li-quids, 2019, 283, 704.
128 Rao T P, Daniel S, Gladis J M. Trac Trends in Analytical Chemistry, 2004, 23(1), 28.
129 Rao T P, Kala R, Daniel S. Analytica Chimica Acta, 2006, 578 (2), 105.
130 Ren Z Q, Zhu X Y, Du J, et al. Applied Surface Science, 2018, 435, 574.
131 CaoH, Yang P, Ye T, et al. Chemosphere, 2021, 278, 130369.
132 Zhang T L, Yue X D, Zhang K R, et al. Materials & Design, 2016, 107, 372.
133 Chaipuang A, Phungpanya C, Thongpoon C, et al. Polymers for Advanced Technologies, 2021, 32(8), 3000.
134 Zhang S Q, Yang X, Liu L, et al. Materials(Basel), 2018, 11(2), 299.
135 Zhou Z Y, Kong D L, Zhu H Y, et al. Journal of Hazardous Materials, 2018, 341, 355.
136 He J N, Shang H Z, Zhang X, et al. Applied Surface Science, 2018, 428, 110.
137 Yuan G Y, Tu H, Liu J, et al. Chemical Engineering Journal, 2018, 333, 280.
138 Zhang Q G, Wu J J, Luo X B. RSC Advances, 2016, 6(18), 14916.
139 Gao X P, Liu J, Li M Y, et al. Chemical Engineering Journal, 2020, 385, 123897.
140 Hou H B, Yu D M, Hu G H. Langmuir:the ACS Journal of Surfaces & Colloids, 2015, 31(4), 1376.
141 Mao J, Lin S, Lu X J, et al. Environmental Research, 2020, 182, 108995. 1.
142 Yu H Y, Shao P H, Fang L L, et al. Chemical Engineering Journal, 2019, 359, 176.
143 Esen C, Andac M, Bereli N, et al. Materials Science & Engineering:C, 2009, 29(8), 2464.
144 Yang H, Hu Y L, Wang X Y, et al. Environmental Science and Pollution Research, 2019, 26(11), 10987.
145 Ge H C, Hu T T, Chen X D. Journal of Hazardous Materials, 2016, 308, 225.
146 Ferreira V R A, Azenha M A, Mêna M T, et al. Journal of Molecular Recognition, 2018, 31(3), e2614.
147 Liu Y, Liu Z C, Gao J, et al. Journal of Hazardous Materials, 2011, 186(1), 197.
148 Liu M X, Sun Y, Na S B, et al. Desalination & Water Treatment, 2016, 57(7), 3270.
149 Yang H, Fan J X, Tian H J, et al. Journal of Sol-Gel Science and Technology, 2019, 90(3), 465.
150 Sayar O, Torbati N A, Saravani H, et al. Journal of Industrial and Engineering Chemistry, 2014, 20(5), 2657.
151 Mishar S, Verma N. Chemical Engineering Journal, 2017, 313(10), 1142.
152 Taghizadeh M, Hassanpour S. Polymer, 2017, 132, 1.
153 Qi X, Gao S, Ding G S, et al. Talanta, 2017, 162, 345.
154 Velempini T, Pillay K, Mbianda X Y, et al. International Journal of Biological Macromolecules, 2017, 101, 837.
155 Liang Q W, Geng J J, Luo H J, et al. Journal of Molecular Liquids, 2017, 248, 767.
156 Zhu L Y, Zhu Z L, Qiu Y L, et al. Separation Science & Technology, 2014, 49(10), 1584.
157 Pan G, Qin Y W, Li X L, et al. Journal of Colloid and Interface Science, 2004, 271 (1), 28.
158 Axe L, Trivedi P. Journal of Colloid and Interface Science, 2002, 247(2), 259.
159 Xiong Y, Lu X M, Tao H C. Desalination and Water Treatment, 2016, 57(5), 2018.
160 Mckenzie R M. Australian Journal of Soil Research, 1980, 18(1), 61.
161 Wan S L, He F, Wu J Y, et al. Journal of Hazardous Materials, 2016, 314, 32.
162 Wan S L, Zhao X, Lv L, et al. Industrial & Engineering Chemistry Research, 2010, 49(16), 7574.
163 Li S S, Li W J, Jiang T J, et al. Analytical Chemistry, 2016, 88, 906.
164 Li S S, Jiang M, Jiang T J, et al. Journal of Hazardous Materials, 2017, 338, 1.
165 He S R, Li Y T, Weng L P, et al. Science of the Total Environment, 2018, S637-S638, 69.
166 Wang J, Lu Z L, Ding K N. Molecular Simulation, 2020, 46(6), 448.
167 Kwon O H, Kim J O, Cho D W, et al. Chemosphere, 2016, 160, 126.
168 Sun Q N, Yang Y J, Zhao Z X, et al. Environmental Science:Nano, 2018, 5(10), 2440.
169 Chen J, Wang N, Liu Y P, et al. Synthetic Metals, 2018, 245, 32.
170 Chen J, Yu M T, Wang C Y, et al. Langmuir:The ACS Journal of Surfaces and Colloids, 2018, 34(34), 10187.
171 Chen J, Zhang L, Zhu J W, et al. Applied Surface Science, 2018, 459, 318.
172 You D, Shi H, Yang L M, et al. Environmental Science:Nano, 2021, 8, 3387.
173 Zhu D H, Zhou S X, Zhou Z M, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 600, 124910.
174 Ide Y, Ochi N, Ogawa M. Angewandte Chemie International Edition, 2011, 50(3), 654.
175 Zhao Y, Hu K Y, Wang D, et al. European Journal of Inorganic Che-mistry, 2019, 47(8), 5000.
176 Liu Y P, Zhang W L, Zhao C C, et al. Chemical Engineering Journal, 2019, 361, 528.
177 Pan N, Li L, Ding J, et al. Journal of Hazardous Materials, 2016, 309, 107.
178 Sharma P, Singh A K, Shahi V K. ACS Sustainable Chemistry & Engineering, 2018, 7(1), 1427.
179 Moorthy M S, Park S S, Selvaraj M, et al. Journal of Nanoscience and Nanotechnology, 2014, 14(11), 8891.
180 Omondi B A, Okabe H, Hidaka Y, et al. Reactive and Functional Polymers, 2018, 130, 90.
181 Huang S H, Chen D H. Journal of Hazardous Materials, 2009, 163, 174.
182 Qiu Y P, Cheng H Y, Xu C, et al. Water Research, 2008, 42, 567.
183 Nejadshafiee V, Islami M R. Environmental Science and Pollution Research, 2020, 27(2), 1625.
184 Koong L F, Lam K F, Barford J, et al. Journal of Colloid and Interface Science, 2013, 395, 230.
185 Wang L, Zhao X H, Zhang J M, et al. Environmental Science and Pollution Research, 2017, 24(16), 14198.
186 Yuan Q L, Li P F, Liu W J, et al. Chemistry of Materials, 2017, 29(23), 10198.
187 Luo J M, Sun M, Ritt C L, et al. Environmental Science and Technology, 2019, 53(4), 2075.
188 Chen T, Wang T, Wang D J, et al. Acta Physico-Chimica Sinica, 2010, 26(12), 3249(in Chinese).
陈田, 王涛, 王道军, 等. 物理化学学报, 2010, 26(12), 3249.
189 Liu C K, Bai R B. Journal of Colloid & Interface Science, 2010, 350(1), 282.
190 Ji C N, Zhang X J, Sun Y Z, et al. Ludong University Journal (Natural Science Edition), 2007(1), 69(in Chinese).
纪春暖, 张秀娟, 孙言志, 等. 鲁东大学学报(自然科学版), 2007(1), 69.
191 Qiao X X, Liu G F, Wang J T, et al. Crystal Growth & Design, 2019, 20(1), 337.
[1] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[2] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[3] 张航, 马蓉, 弓亮, 黄丽丽, 陈南春, 解庆林, 马丽丽. 硅藻基Cr(VI)表面离子印迹吸附材料的制备及其对Cr(VI)的吸附性能[J]. 材料导报, 2022, 36(8): 21010050-7.
[4] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[5] 肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
[6] 师晓凤, 马应霞, 李鑫, 康小雅, 李晓华, 杨海军. 静电纺聚丙烯腈基纳米纤维对重金属离子吸附性能的研究进展[J]. 材料导报, 2022, 36(18): 20090131-9.
[7] 张诗洋, 朋小康, 廖松义, 闵永刚. 用于分离重金属离子的聚苯胺改性氧化石墨烯复合膜[J]. 材料导报, 2021, 35(18): 18030-18034.
[8] 谢艳新, 杨倩, 陈雅仙, 陈改荣, 朱宝库, 章鹏. 新型荷正电PVC微滤膜的制备及去除Cr(Ⅵ)性能[J]. 材料导报, 2021, 35(16): 16184-16189.
[9] 孔志云, 樊龙伟, 杜亚杰, 牛昌昌, 狄然, 张环, 魏俊富. 金属表面离子印迹材料的研究进展[J]. 材料导报, 2021, 35(15): 15143-15152.
[10] 附青山, 张磊, 张伟, IsmailPirMuhammad, 陈雪丹, 龚敏, 何平, 王祖波. 金属-有机框架材料对废水中污染物的吸附研究进展[J]. 材料导报, 2021, 35(11): 11099-11109.
[11] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[12] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[13] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[14] 杨玥, 赵斌, 张友魁, 李敏, 段涛. g-C3N4光催化还原净化重金属离子的研究进展[J]. 材料导报, 2020, 34(17): 17132-17138.
[15] 宋晔, 缪远玲, 孟月东, 王奇. 利用等离子体技术制备和改性碳基纳米材料的研究进展[J]. 材料导报, 2018, 32(19): 3295-3303.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed