Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11099-11109    https://doi.org/10.11896/cldb.19100039
  金属与金属基复合材料 |
金属-有机框架材料对废水中污染物的吸附研究进展
附青山1,†*, 张磊1, 张伟1, IsmailPirMuhammad1, 陈雪丹1, 龚敏1, 何平2, 王祖波2
1 四川轻化工大学材料科学与工程学院,四川 643000;
2 中昊黑元化工研究设计院有限公司,四川 643000
Research Progress in Metal-organic Frame Materials for Adsorptive Removal of Contamination in Wastewater
FU Qingshan, ZHANG Lei1, ZHANG Wei1, ISMAIL Pir-Muhammad1, CHEN Xuedan1, GONG Min1, HE Ping2, WANG Zubo2
1 Materials Science and Engineering College, Sichuan University of Science & Engineering, Sichuan 643000, China;
2 China Carbon Black Institute, Sichuan 643000, China
下载:  全 文 ( PDF ) ( 6696KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 可用的清洁水资源缩减已成为全球面临的重要危机。引起该危机的主要原因是各种污染物因生产、生活或事故排入水体导致水体污染。因此,解决水资源危机的关键在于对污水处理和再生。多种污水处理和再生方法应运而生,其中吸附法因处理效率高、操作简便、成本低而被广泛应用到污水处理中。
吸附法的关键在于吸附剂的选择和应用。应用于水处理的传统吸附剂,如活性炭、沸石、天然粘土、活性氧化铝等,在面对复杂水体环境和各种性质迥异的污染物时已不能符合水污染处理的更高标准。因此,新型吸附剂的开发与应用成为吸附领域研究热点。
金属有机框架(Metal-organic frame,MOF)材料,一类金属离子或金属簇与有机配体之间自组装配位形成的化合物,具有高比表面积、高孔隙率和可控的孔结构,已成为吸附领域冉冉升起的新星。目前MOF材料作为水处理吸附剂的研究主要集中在:(1)各种MOF材料对不同污染物的吸附性能研究,以揭示相关吸附规律;(2)MOF材料自身功能化或MOF复合材料的制备,以改善自身稳定性,提高其吸附性能或实现选择性吸附;(3)MOF衍生碳吸附材料的研究,以应对恶劣水体环境或极端水处理条件。
本文对单一MOF材料、功能化MOF材料、MOF衍生碳材料吸附去除水体中有机染料、其他有机污染物、重金属离子的相关研究进行了综述。概述了多种MOF材料对不同污染物的吸附性能,总结了针对吸附应用的多种MOF功能化方式及其吸附效果的改进,归纳了多种MOF衍生碳材料作为吸附剂在水处理中的应用,指出了目前MOF吸附材料在水处理中存在的主要问题,并提出了解决这些问题的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
附青山
张磊
张伟
IsmailPirMuhammad
陈雪丹
龚敏
何平
王祖波
关键词:  水处理  金属有机框架  吸附法  有机污染物  重金属离子  多孔碳    
Abstract: The depletion of clean water has become a major global crisis, of which main reason is the water pollution caused by various pollutants discharged into the water due to production, living activities or accidents. Therefore, the key to solve the crisis lies in wastewater treatment and regeneration. A variety of water treatment and regeneration methods have emerged, among which adsorption has become a widely used sewage treatment method owing to its high performance, simple operation and low cost.
Choice and application of eligible adsorbents determine the performance of an adsorption process. Traditional adsorbents used in water treatment, such as activated carbon, zeolite, natural clay and activated alumina, cannot meet the higher and higher requirements of wastewater treatment for kinds of pollutants with different properties in complex water environment. For this reason, the development and utilization of new adsorbents have become a research hotspot in the field of adsorption.
Metal?organic frame (MOF) materials, a type of compound formed by self?assembly between metal ions or metal clusters and organic ligands, has attracted increasing attention in the field of adsorption due to its huge specific surface area, high porosity and controllable pore structure. At present, the researches of MOF materials as adsorbents for water treatment mainly focus on: (1) adsorption performance of various MOF mate?rials for different contaminations to reveal the relevant adsorption rules; (2) modification of MOF or preparation of MOF composite materials to improve self?stability and adsorption performance or achieve selective adsorption; (3) fabrication of MOF?derived carbon adsorbents for application in harsh water environment or extreme water treatment conditions. This review includes the researches related to single MOF materials, functionalized MOF materials, and MOF?derived carbon materials for the adsorptive removal of organic dyes, other organic pollutants and heavy metal ions in water. We review the different adsorptive capacities of va?rious MOF materials for kinds of contaminations in water, the diversified functionalization methods of MOF in order to boost adsorption perfor?mance and extent their application, and the exhibition of MOF?derived carbonaceous adsorbents in water treatment. Finally, we also point out the current main issues of MOF adsorbents in water treatment, and put forward some ideas to solve these problems.
Key words:  water treatment    metal organic framework    adsorption method    organic pollutant    heavy metal ion    porous carbon
                    发布日期:  2021-06-25
ZTFLH:  X522  
基金资助: 国家自然基金项目(51902216); 四川省科技厅项目(2018JY0493); 四川省教育厅项目(18ZA0351); 四川轻化工大学人才引进基金(2017RCL27)和四川轻化工大学研究生创新基金(y2019024)
通讯作者:  *sendysan@suse.edu.cn
†These authors contribute equally to this work   
作者简介:  附青山,博士,教授,硕士研究生导师。分别于2004、2007和2011年在四川大学获得学士、硕士和博士学位;英国利物浦大学访问学者,中昊黑元化工研究设计院博士后;2012年起任教于四川轻化工大学。目前主要从事污水再生处理及新能源器件相关材料研究。主要包括金属-有机骨架材料、碳纳米材料,以及静电纺丝膜材料。张磊,硕士研究生,2017年在四川轻化工大学获得学士学位,随后加入新型碳材料附青山教授课题组,目前主要从事金属有机框架材料(MOF)的合成与制备,并将其用于吸附去除水体中有害物质的研究。
引用本文:    
附青山, 张磊, 张伟, IsmailPirMuhammad, 陈雪丹, 龚敏, 何平, 王祖波. 金属-有机框架材料对废水中污染物的吸附研究进展[J]. 材料导报, 2021, 35(11): 11099-11109.
FU Qingshan, ZHANG Lei, ZHANG Wei, ISMAIL Pir-Muhammad, CHEN Xuedan, GONG Min, HE Ping, WANG Zubo. Research Progress in Metal-organic Frame Materials for Adsorptive Removal of Contamination in Wastewater. Materials Reports, 2021, 35(11): 11099-11109.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100039  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11099
1 Schwarzenbach R P, Egli T, Hofstetter T B, et al. Annual Review of Environment and Resources,2010,35(1),109.
2 Pan Y, Wang J, Sun C, et al. Journal of Hazardous Materials,2016,309,65.
3 Duan S X, Li J X, Liu X, et al. ACS Sustainable Chemistry & Enginee?ring,2016,4(6),3368.
4 Pfister S, Boulay A M, Berger M, et al. Ecological Indicators,2017,72,352.
5 Brailsford F, Glanville H, Marshall M, et al. Science of The Total En?vironment,2017,598,377.
6 Hou X, Mu L, Chen F, et al. Environmental Science: Nano,2018,5(10),2216.
7 Wang X M, Mu C B, Huang B. Journal of Water Resources Research,2017,6(3),272.
8 Lv H, Wang X, Fu Q, et al. Journal of Colloid and Interface Science,2017,506,442.
9 Imbrogno A, Biscarat J, Schaefer A. Current pharmaceutical design,2017,23(2),328.
10 Kayvani Fard A, Mckay G, Buekenhoudt A, et al . Materials,2018,11(1),74.
11 Geltmeyer J, Teixido H, Meire M, et al. Separation and Purification Technology,2017,179,533.
12 Wang Z G, Wang J R, Peng W B, et al. Chinese Rare Earths,2017,38(1),103(in Chinese).
王志高,王金荣,彭文博,等.稀土,2017,38(1),103.
13 Yue X, Tang J L, Yu G P, et al. Environmental Science,2017,38(9),3769(in Chinese).
岳秀,唐嘉丽,于广平,等.环境科学,2017,38,3769.
14 H?nninen S, Chaithanya B K, Hokynar K, et al. Journal of Lipid Research,58(6),1259.
15 Kang Y, Lu J, Guo J. Transactions of Tianjin University,2017,23(2),110.
16 Joshi P, Patel C, Vyas M. AIP Conference Proceedings,2018,1961(1),030037.
17 Cason E D, Williams P J, Ojo E, et al. World Journal of Microbiology and Biotechnology,2017,33(5),88.
18 Wu T T, Yang N, Liu J, et al. Chinese Journal of Applied and Environmental Biology,2017,23(5),907(in Chinese).
吴亭亭,杨暖,刘建,等.应用与环境生物学报,2017,23(5),907.
19 Riyanto, Agustiningsih W A. IOP Conference Series: Materials Science and Engineering,2018,349(1),012053.
20 Park J A, Jung S M, Yi I G, et al. Chemosphere,2017,177,15.
21 Pranoto, Inayati, Firmansyah F. IOP Conference Series: Materials Science and Engineering,2018,349(1),012047.
22 Fang Y Y, Huang Q Z, Liu P Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,540,112.
23 Bhatnagar A, Sillanp?? M. Chemosphere,2017,166,497.
24 Farha O, Eryazici I, Jeong N C, et al. Journal of the American Chemical Society,2012,134(36),15016.
25 Fujita M, Kwon Y J, Washizu S, et al. Journal of the American Chemical Society,1994,116(3),1151.
26 Zhou E L, Huang P, Qin C, et al. Journal of Materials Chemistry A,2015,3(14),7224.
27 Cook T R, Zheng Y R, Stang P J. Chemical Reviews,2013,113(1),734.
28 Furukawa H, Cordova K, O'keeffe M, et al. Science,2013,341(6149),1230444.
29 Elsayed E, Al?dadah R, Mahmoud S, et al. Desalination,2017,406,25.
30 Choi J, Lin L C, Grossman J. The Journal of Physical Chemistry C,2018,122(10),5545.
31 Wang X X, Yu S J, Wang X K. Journal of Inorganic Materials,2019,34(1),17.
32 Latroche M, Surble S, Serre C, et al. Angewandte Chemie?International Edition,2006,45(48),8227.
33 Llewellyn P L, Bourrelly S, Serre C, et al. Langmuir,2008,24(14),7245.
34 Agostoni V, Chalati T, Horcajada P, et al. Advanced Healthcare Mate?rials,2013,2(12),1630.
35 Henschel A, Gedrich K, Kraehnert R, et al. Chemical Communications,2008,35(35),4192.
36 Zhang T, Lin W B. Chemical Society Reviews,2014,43(16),5982.
37 Yaghi O M, Li G M, Li H L. Nature,1995,378(6558),703.
38 Férey G. Chemical Society Reviews,2008,37(1),191.
39 Lu W G, Wei Z W, Gu Z Y, et al. Chemical Society Reviews,2014,43(16),5561.
40 Eddaoudi M, Kim J, Rosi N, et al. Science,2002,295(5554),469.
41 Deng H X, Doonan C J, Furukawa H, et al. Science,2010,327(5967),846.
42 Chen Y, Zhai B Y, Liang Y N, et al. Journal of The Chinese Ceramic Society,2019,47(4),434(in Chinese).
陈颖,翟勃银,梁宇宁,等.中国陶瓷学会学报,2019,47(4),434.
43 Zhao X Y, He F, Shi C S, et al. Journal of Tianjin University (Science and Technology),2019,52(5),540(in Chinese).
赵新宇,何芳,师春生,等.天津大学学报(科技版),2019,52(5),540.
44 Zi G L, Yan Z Y, Wang Y X, et al. Carbohydrate Polymers,2015,115,146.
45 Wang D, Fang S H, Gu X D, et al. Liaoning Chemical Industry,2015,44(7),794.
王丹,方师豪,谷小丹,等.辽宁化工,2015,44(7),794.
46 Haque E, Jun J W, Jhung S H. Journal of Hazardous Materials,2011,185(1),507.
47 Du X D, Wang C C, Liu J G, et al. Journal of Colloid and Interface Science,2017,506,437.
48 Li Y, Zhou K, He M, et al. Microporous and Mesoporous Materials,2016,234,287.
49 Lin S, Song Z L, Che G B, et al. Microporous and Mesoporous Materials,2014,193,27.
50 Yuguchi Y, Hirotsu T, Hosokawa J. Cellulose,2005,12(5),469.
51 Jiang C, Fu B, Cai H, et al. Chemical Speciation & Bioavailability,2016,28,199.
52 Qiu J, Feng Y, Zhang X, et al. Journal of Colloid and Interface Science,2017,499,151.
53 Allouche F N, Yassaa N, Lounici H. Procedia Earth and Planetary Science,2015,15,596.
54 Yao S, Xu T, Zhao N, et al. Dalton Transactions,2017,46(10),3332.
55 Liu B J, Yang F, Zou Y X, et al. Journal of Chemical & Engineering Data,2014,59(5),1476.
56 Hasan Z, Tong M, Jung B K, et al. The Journal of Physical Chemistry C,2014,118(36),21049.
57 Tan F C, Liu M, Li K Y, et al. Chemical Engineering Journal,2015,281,360.
58 Richardson S D. Analytical Chemistry,2014,86(6),2813.
59 Richardson S D. Analytical Chemistry,2002,74(12),2719.
60 Huang Y X, Keller A A. ACS Sustainable Chemistry & Engineering,2013,1(7),731.
61 Murray K E, Thomas S M, Bodour A A. Environmental Pollution,2010,158(12),3462.
62 Kosaki Y, Izawa H, Ishihara S, et al. ACS Applied Materials & Interfaces,2013,5(8),2930.
63 Mori T, Akamatsu M, Okamoto K, et al. Science and Technology of Advanced Materials,2013,14(1),015002.
64 Khan N A, Jung B K, Hasan Z, et al. Journal of hazardous materials,2015,282,194.
65 Jung B K, Jun J W, Hasan Z, et al. Chemical Engineering Journal,2015,267,9.
66 Pan Y, Li Z, Zhang Z, et al. Journal of Environmental Management,2016,169,167.
67 Andrew L K Y, Hsieh Y T. Journal of the Taiwan Institute of Chemical Engineers,2015,50,223.
68 Azhar M R, Abid H R, Periasamy V, et al. Journal of Colloid and Interface Science,2017,500(15),88.
69 Seo Y S, Khan N A, Jhung S H. Chemical Engineering Journal,2015,270,22.
70 Enujiugha V, Nwanna L C. Journal of Applied Sciences and Environmental Management,2004,8(2),71.
71 Wiese F K, Ryan P C. Marine Pollution Bulletin,2003,46(9),1090.
72 Lee K. Spill Science & Technology Bulletin,2002,8(1),3.
73 Nelson S A. Journal of Applied Ecology,1968,5(1),97.
74 Lin K Y A, Chen Y C, Phattarapattamawong S. Journal of Colloid and Interface Science,2016,478,97.
75 Sann E E, Pan Y, Gao Z F, et al. Separation and Purification Techno?logy,2018,206,186.
76 Lin K Y A, Yang H, Petit C, et al. Chemical Engineering Journal,2014,249,293.
77 Kadirvelu K, Thamaraiselvi K, Namasivayam C. Bioresource Technology,2001,76(1),63.
78 Wang C H, Liu X L, Chen J P, et al. Scientific Reports,2015,5,16613.
79 De D J, Folens K, De C J, et al. Journal of hazardous materials,2017,335,1.
80 Jian M P, Liu B, Zhang G S, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2015,465,67.
81 Ding Y, Xu Y F, Ding B, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,520,661.
82 Li X Y, Gao X Y, Ai L H, et al. Chemical Engineering Journal,2015,274,238.
83 Maleki A, Hayati B, Naghizadeh M, et al. Journal of Industrial and Engineering Chemistry,2015,28,211.
84 Feng Y F, Jiang H, Li S N, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,431,87.
85 Li J Q, Gong L L, Feng X F, et al. Chemical Engineering Journal,2017,316,154.
86 Xiong Y Y, Li J Q, Gong L L, et al. Journal of Solid State Chemistry,2017,246,16.
87 Minh T H T, Thu P T T, Le H P T, et al. Journal of Environmental Chemical Engineering,2018,6(4),4093.
88 Xue H, Chen Q H, Jiang F L, et al. Chemical Science,2016,7(9),5983.
89 Wu S C, You X, Yang C, et al. Water Science & Technology,2017,75(12),2800.
90 Moradi S E, Dadfarnia S, Haji S A, et al. Desalination and water treatment,2014,56(3),1.
91 Feng D, Wei C X, Xia Y. Chinese journal of chromatography,2017,35(3),237.
92 Chen Q, He Q Q, Lv M M, et al. Applied Surface Science,2015,327,77.
93 Wu Z B, Yuan X Z, Zhong H, et al. Journal of Molecular Liquids,2017,247,215.
94 Haque E, Lo V, Minett A I, et al. Journal of Materials Chemistry A,2014,2(1),193.
95 Luo X P, Fu S Y, Du Y M, et al. Microporous and Mesoporous Materials,2017,237,268.
96 Zhang J, Li F, Sun Q. Applied Surface Science,2018,440,1219.
97 Zhao S, Chen D, Wei F, et al. Ultrason Sonochem,2017,39,845.
98 Shao Y M, Zhou L C, Bao C, et al. Chemical Engineering Journal,2016,283,1127.
99 Zhang C F, Qiu L G, Ke F, et al. Journal of Materials Chemistry A,2013,1(45),14329.
100 Liu H C, Ren X H, Chen L G. Journal of Industrial and Engineering Chemistry,2016,34,278.
101 Huang L J, He M, Chen B B, et al. Chemosphere,2018,199,435.
102 Rogers C, Pun D, Fu Q S, et al. Ceramics,2018,1,353.
103 Fu Q, Wen L, Zhang L, et al. ACS Appl Mater Interfaces,2017,9(39),33979.
104 Yang L B, Wang Z, Zhang J L. Journal of Membrane Science,2017,532,76.
105 Lv Y C, Zhang R S, Zeng S L, et al. Chemical Engineering Journal,2018,339,359.
106 Feng D, Xia Y. Journal of Separation Science,2018,41(3),732.
107 Seo P W, Khan N A, Jhung S H. Chemical Engineering Journal,2017,315,92.
108 Hasan Z, Khan N A, Jhung S H. Chemical Engineering Journal,2016,284,1406.
109 Li Y, Lin Y, Shun X Y, et al. New Chemical Materials,2018,46(3),6.
110 Zhou L, Su P, Deng Y, et al. Journal of Separation Science,2017,40(4),909.
111 Huo S H, Yan X P. Analyst,2012,137(15),3445.
112 Han T T, Li C F, Guo X Y, et al . Applied Surface Science,2016,390,506.
113 Han T T, Xiao Y L, Tong M M, et al. Chemical Engineering Journal,2015,275,134.
114 Cai Y H, Chen D Y, Li N J, et al. Journal of Membrane Science,2017,543,10.
115 Liu Z X. Shandong Chemical Industry,2018,47(4),13.
116 Liu J M, Liu T, Wang C C, et al. Journal of Molecular Liquids,2017,242,531.
117 Luo X, Shen T, Ding L, et al. Journal of Hazardous Materials,2016,306,313.
118 Wu Y Z, Xu G H, Liu W, et al. Microporous and Mesoporous Materials,2015,210,110.
119 Abbasi A, Moradpour T, Van H K. Inorganica Chimica Acta,2015,430,261.
120 Tahmasebi E, Masoomi M Y, Yamini Y, et al. Inorganic Chemistry,2015,54(2),425.
121 Zhang Y T, Zhao X D, Huang H L, et al. RSC Advances,2015,5(88),72107.
122 Yuan G Y, Tu H, Liu J, et al. Chemical Engineering Journal,2018,333,280.
123 Saleem H, Rafique U, Davies R P. Microporous and Mesoporous Mate?rials,2016,221,238.
124 Naeimi S, Faghihian H. Separation and Purification Technology,2017,175,255.
125 Ke F, Jiang J, Li Y Z, et al. Applied Surface Science,2017,413,266.
126 Alqadami A A, Naushad M, Alothman Z A, et al. ACS Applied Mate?rials & Interfaces,2017,9(41),36026.
127 Yang Q X, Zhao Q Q, Ren S S, et al. Journal of Solid State Chemistry,2016,244,25.
128 Wang K, Tao X R, Xu J Z, et al. Chemistry Letters,2016,45,1365.
129 Yang W X, Wang J, Yang Q F, et al. Chemical Engineering Journal,2018,339,230.
130 Efome J E, Rana D, Matsuura T, et al. ACS Applied Materials & Interfaces,2018,10(22),18619.
131 Fu Q, Wen L, Zhang L, et al. Industrial & Engineering Chemistry Research,2019,58,14312.
132 Haque E, Lee J E, Jang I T, et al. Journal of Hazardous Materials,2010,181,535.
133 Xing S H, Bing Q M, Song L F, et al. Chemistry?A European Journal,2016,22(45),16230.
134 Luo X B, Ding L, Luo J M. Journal of Chemical & Engineering Data,2015,60(6),1732.
135 Yin H Y, Zhu J J, Chen J L, et al. Materials Letters,2018,221,267.
136 Ma L, Wang R, Li Y H, et al. Journal of Materials Chemistry A,2018,6(47),24071.
137 Zhu G, Li X L, Wang H Y, et al. Catalysis Communications,2017,88,5.
138 Pachfule P, Shinde D, Majumder M, et al. Nature Chemistry,2016,8(7),718.
139 Yang S J, Kim T, Im J H, et al. Chemistry of Materials,2012,24(3),464.
140 Xiao L, Xu R, Yuan Q, et al. Talanta,2017,167,39.
141 Li A, Tong Y, Cao B, et al. Scientific Reports,2017,7,40574.
142 Chaikittisilp W, Ariga K, Yamauchi Y. Journal of Materials Chemistry A,2013,1(1),14.
143 Abbasi Z, Shamsaei E, Leong S K, et al. Microporous and Mesoporous Materials,2016,236,28.
144 Torad N L, Hu M, Ishihara S, et al. Small,2014,10(10),2096.
145 Liu S C, Yue Z F, Liu Y. Journal of Porous Materials,2015,22(2),465.
146 Yuan H. Adsorption of Typical Environmental Pollutants on MOF?5?derived Nanoporous Carbon. Master's Thesis, Dalian University of Technology, China,2016(in Chinese).
原晖.MOF?5基多孔碳吸附典型环境污染物的研究.硕士学位论文,大连理工大学,2016.
147 Nasrollahpour A, Moradi S E. Microporous and Mesoporous Materials,2017,243,47.
148 Ahmed I, Bhadra B N, Lee H J, et al. Catalysis Today,2018,301,90.
149 Bhadra B N, Ahmed I, Kim S, et al. Chemical Engineering Journal,2017,314,50.
150 Jiang H L, Liu B, Lan Y Q, et al. Journal of the American Chemical Society,2011,133(31),11854.
151 Li S Q, Zhang X D, Huang Y M. Journal of Hazardous Materials,2017,321,711.
152 Wu M L. Water Purification Technology,2018,37(1),230.
153 Bhadra B N, Jhung S H. Microporous and Mesoporous Materials,2018,270,102.
154 Tan K, Nijem N, Gao Y Z, et al. CrystEngComm,2015,17(2),247.
155 Li J, Zhang F C. Journal of Chongqing Technology and Business University (Natural Science Edition),2019,36(2),37(in Chinese).
李季,张付臣.重庆工商大学学报(自然科学版),2017,36(2),37.
[1] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[2] 王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
[3] 代朝猛, 王泽雨, 段艳平, 刘曙光, 涂耀仁, 李彦. 过硫酸盐高级氧化技术在土壤和地下水修复中的研究进展[J]. 材料导报, 2020, 34(Z1): 107-110.
[4] 赵僧群, 李旭蕊, 韩莎莎, 李丽. 三种金属有机框架对苯达莫司汀的载药研究[J]. 材料导报, 2020, 34(Z1): 523-526.
[5] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[6] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[7] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[8] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[9] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[10] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[11] 蔡广, 李琳, 汪荣, 陈艳秋, 陈茂龙, 程云辉, 丁利, 许宙. 磁性介孔碳的粒径可控制备及弛豫性能[J]. 材料导报, 2020, 34(22): 22020-22023.
[12] 李义豪, 吴平霄, 姜璐, 吴沂晓. 高铁酸盐在环境修复中的应用综述[J]. 材料导报, 2020, 34(19): 19003-19009.
[13] 杨玥, 赵斌, 张友魁, 李敏, 段涛. g-C3N4光催化还原净化重金属离子的研究进展[J]. 材料导报, 2020, 34(17): 17132-17138.
[14] 姚庆达, 温会涛, 杨长凯, 梁永贤, 王小卓, 但卫华. 多层氧化石墨烯膜的结构、性能及在水处理中的应用进展[J]. 材料导报, 2020, 34(15): 15047-15058.
[15] 杨威, 郭盛, 陈金毅. 累托石基复合光催化材料研究进展[J]. 材料导报, 2020, 34(11): 11022-11028.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[3] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[4] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[5] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[6] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[7] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[8] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed