Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22020-22023    https://doi.org/10.11896/cldb.19090023
  无机非金属及其复合材料 |
磁性介孔碳的粒径可控制备及弛豫性能
蔡广1,2, 李琳1, 汪荣1, 陈艳秋1, 陈茂龙1, 程云辉1, 丁利1, 许宙1
1 长沙理工大学化学与食品工程学院,长沙 410114
2 北京化工大学软物质科学与工程高精尖创新中心,北京 100029
Preparation of Size-controllable Magnetic Mesoporous Carbons and Their Relaxation Properties
CAI Guang1,2, LI Lin1, WANG Rong1, CHEN Yanqiu1, CHEN Maolong1, CHENG Yunhui1, DING Li1, XU Zhou1
1 School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
2 Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
下载:  全 文 ( PDF ) ( 2903KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,磁性介孔碳(MMCs)材料在医学成像、药物运输以及生物传感等领域呈现出良好的应用前景。运用晶体生长法,通过控制生长次数,合成60~330 nm范围内粒径可控的金属有机框架(MOFs)材料作为牺牲模板,于N2氛围中以特定温度进行煅烧,成功制备出220~310 nm范围内对应粒径可控的MMCs。利用透射电镜、水合粒径、红外光谱、质子横向弛豫率来探讨其微观形貌、分散性、化学结构与官能团的改变以及弛豫性能。结果表明,煅烧后的MMCs质子横向弛豫率较煅烧前的MOFs前驱体提高了12~48倍,且不同粒径的MMCs质子横向弛豫率会随着粒径的增大而逐渐增大,平均粒径为310 nm的MMCs的横向弛豫率最大,为34.205 mM-1·s-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡广
李琳
汪荣
陈艳秋
陈茂龙
程云辉
丁利
许宙
关键词:  可控粒径  磁性介孔碳  金属有机框架  弛豫率    
Abstract: In recent years, magnetic mesoporous carbons (MMCs) have shown great application prospects in the fields of medical imaging, drug transportation and biosensing. Firstly, metal-organic frameworks (MOFs) with controllable particle sizes in the range of 60~330 nm were prepared via controlled crystal growth method by controlling the number of growths, Then,they were calcined at a specific temperature in N2 atmosphere to prepare the MMCs with controllable particle sizes in the range of 220—310 nm successfully. The changes of microstructure, dispersion, chemical structure and functional group as well as relaxation property were studied by TEM, DLS, FTIR and proton transverse relaxation rate. The results show that the proton transverse relaxation rate of MMCs after calcination is nearly 12—48 times higher than that of the MOFs precursor, and the proton transverse relaxation rate of MMCs with different particle sizes increases with the increase of particle sizes. The MMCs with an average size of 310 nm have the largest transverse relaxation rate of 34.205 mM-1·s-1.
Key words:  size-controllable    magnetic mesoporous carbons    metal-organic frameworks    relaxation rates
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  O614  
基金资助: 国家重点研发计划(2016YFF0103701;2016YFF0203800);国家自然科学基金(31401566);湖南省创新平台与人才计划(2017RS3055);粮食深加工与品质控制湖南省2011协同创新项目(2013448);常熟市科技发展计划(社会发展类)项目(CS201605);苏州市科技计划项目(SNG201617)
通讯作者:  xz_jnu@126.com   
作者简介:  蔡广,2019年6月本科毕业于长沙理工大学食品科学与工程专业,现在于北京化工大学软物质科学与工程高精尖创新中心生物工程专业攻读硕士学位。在本科期间曾获得校级科技立项三等奖、校级英语竞赛二等奖、李锦记杯二等奖、康师傅杯校园创意大赛一等奖、校三好学生、校优秀学生二等奖学金等诸多奖项,并且一直协助许宙副教授从事食品安全检测、金属有机框架材料及其衍生物等课题方向的研究。许宙,1983年生,长沙理工大学副教授,研究生导师,长沙理工大学“湖湘学者”,加州大学戴维斯分校访问学者,RSC Advances等国际期刊审稿人。主要从事纳米生物传感技术、食品安全快速检测关键技术等研究工作。近年来主持了国家自然科学基金项目、国家重点研发计划子课题等项目10余项、以第一作身份发表论文20余篇(其中SCI收录10余篇,IF≥5.0的4篇),授权发明专利16项,其中美国专利1项。主导提出谷物食品安全快速检测关键技术,荣获湖南省科技进步二等奖1项,“功能纳米材料及自组装的食品安全检测新原理与新方法研究”获湖南出入境检验检疫局自然科学一等奖。
引用本文:    
蔡广, 李琳, 汪荣, 陈艳秋, 陈茂龙, 程云辉, 丁利, 许宙. 磁性介孔碳的粒径可控制备及弛豫性能[J]. 材料导报, 2020, 34(22): 22020-22023.
CAI Guang, LI Lin, WANG Rong, CHEN Yanqiu, CHEN Maolong, CHENG Yunhui, DING Li, XU Zhou. Preparation of Size-controllable Magnetic Mesoporous Carbons and Their Relaxation Properties. Materials Reports, 2020, 34(22): 22020-22023.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090023  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22020
1 Li Penggang, Wang Jingxuan, Guo Feifei, et al. Chemical Industry and Engineering Progress, 2018, 37(1), 149 (in Chinese).李鹏刚, 王靖轩, 郭飞飞, 等. 化工进展, 2018, 37(1), 149.2 Tang J, Wang J. Chemical Engineering Journal, 2018, 351, 1085.3 Masteri-Farahani M, Saleh E. Journal of Porous Materials, 2018, 25(4), 1195.4 Hasanzadeh M, Nahar A S, Hassanpour S, et al. Enzyme & Microbial Technology, 2017, 105, 64.5 Deka K, Guleria A, Kumar D, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2018, 539, 229.6 Zhang Y, Wu M, Wu M, et al. ACS Omega, 2018, 3(8), 9126.7 Zhang Y, Yang L, Yan L, et al. Coordination Chemistry Reviews, 2019, 391, 69.8 Das R K, Pramanik A, Majhi M, et al. Langmuir, 2018, 34(18), 5253.9 Zhang Q, Wang P, Yun L, et al. Advanced Functional Materials, 2017, 27(11), 1605313.10 Nsabimana A, Kitte S A, Wu F, et al. Applied Surface Science, 2019, 467, 89.11 Min C, Shao H, Liong M, et al. ACS Nano, 2012, 6(8), 6821.12 Jun Y W, Lee J H, Cheon J. Cheminform, 2010, 47(28), 5122.13 Chen D X, Xu F J, Gu H C. Journal of Magnetism and Magnetic Mate-rials, 2012, 324(18), 2809.14 Ro Y, Haam S.Journal of Korean Society for Imaging Science and Technology, 2013, 19(1), 1.15 Yastremsky I A. Journal of Magnetism and Magnetic Materials, 2015, 382, 349.16 Li W H, Wu X F, Li S D, et al. Applied Surface Science, 2018, 436,252.17 Huang G, Yang L, Ma X, et al. Chemistry, 2016, 22(10), 3470.18 Salunkhe R R, Tang J, Kamachi Y, et al. ACS Nano, 2015, 9(6), 6288.19 Yang S J, Ji H I, Kim T, et al. Journal of Hazardous Materials, 2011, 186(1), 376.20 Shen K, Chen X, Chen J, et al. ACS Catalysis, 2016, 6(9), 5887.21 Wang X G, Cheng Q, Yu Y, et al. Angewandte Chemie International Edition, 2018, 57(26), 7836.22 Ma R, Hao L, Wang J, et al. Journal of Separation Science, 2016, 39(18), 3571.23 Liu H, Li Z, Zhang L, et al. Nanoscale Research Letters, 2019, 14, 237.24 Yan S, Yu Y, Cao Y. Applied Surface Science, 2019, 465, 383.
[1] 赵僧群, 李旭蕊, 韩莎莎, 李丽. 三种金属有机框架对苯达莫司汀的载药研究[J]. 材料导报, 2020, 34(Z1): 523-526.
[2] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[3] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[4] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[5] 刘威,陈厚和. 一维含能金属有机框架的合成与性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 223-227.
[6] 刘博煜, 龚有进, 刘强, 李伟, 吴晓楠, 熊顺顺, 胡胜, 汪小琳. 新型多孔材料在惰性气体Xe/Kr分离中的应用*[J]. 《材料导报》期刊社, 2017, 31(19): 51-59.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed