Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17132-17138    https://doi.org/10.11896/cldb.19090038
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
g-C3N4光催化还原净化重金属离子的研究进展
杨玥1, 赵斌2, 张友魁2, 李敏1, 段涛2
1 绵阳师范学院资源环境工程学院,绵阳 621000
2 西南科技大学核废物与环境安全省部共建协同创新中心,绵阳 621000
Research Progress on Photocatalytic Reduction of Heavy Metal Ions by g-C3N4
YANG Yue1, ZHAO Bin2, ZHANG Youkui2, LI Min1, DUAN Tao2
1 School of Resources and Environmental Engineering, Mianyang Teachers College, Mianyang 621000, China
2 National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621000,China
下载:  全 文 ( PDF ) ( 3017KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着社会的迅速发展,污染物的排放量也日益增多,严重破坏了生态环境。尤其是废水中的重金属离子,严重破坏了水生态环境,对水生动、植物以及人体健康都造成了极大损害。因此,处理废水中的重金属离子对保护水生态环境意义重大。
   目前,研究人员探索出许多净化废水中重金属离子的方法,包括物理修复法、化学治理法、生物治理法、膜分离法以及光催化法。其中,光催化是一种环境友好、节能的方法,其核心是光催化材料。类石墨相氮化碳(g-C3N4)因其良好的化学稳定性、热稳定性和光电性质,成为近年来研究最广泛的非金属光催化剂。但纯氮化碳存在比表面积小、禁带宽度较大、可见光反应范围小、光生电子空穴复合率较高等缺点,因此需对氮化碳进行改性,以提高其光催化活性。氮化碳的改性方法主要有形貌调控、掺杂改性、贵金属沉积、异质结法。
   本文重点归纳了改性氮化碳作为光催化剂光催化处理六价铀离子(U6+)、六价铬离子(Cr6+)、铜离子(Cu-EDTA)、汞单质(Hg0)的研究现状,总结了氮化碳还原净化重金属离子的研究进展,以期为未来光催化研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨玥
赵斌
张友魁
李敏
段涛
关键词:  环境污染  氮化碳  还原净化  重金属离子    
Abstract: With the rapid development of society, the discharge of pollutants is increasing, which seriously damages the ecological environment. In particular, heavy metal ions in wastewater have severely damaged the aquatic environment and caused great damage to aquatic life, plants and human health. Therefore, the treatment of heavy metal ions in wastewater is of great significance to protect the water ecological environment.
At present, researchers have explored many methods for purifying heavy metal ions in wastewater, including physical remediation, chemical treatment, biological treatment, membrane separation, and photocatalysis. Among them, photocatalysis is an environmentally friendly and energy-saving method, and its core is photocatalytic materials. Graphite-like carbon nitride (g-C3N4) has become the most widely studied non-metallic photocatalyst in recent years due to its good chemical stability, thermal stability and photoelectric properties. However, pure carbon nitride has the disadvantages of small specific surface area, large band gap, small visible light reaction range, and high photo-electron hole recombination rate. Therefore, carbon nitride needs to be modified to improve its photocatalytic activity. The modification methods of carbon nitride mainly include morphology control, doping modification, precious metal deposition, and heterojunction method.
This article focuses on the research status of modified carbon nitride as a photocatalyst for the photocatalytic treatment of hexavalent uranium ions (U6+), hexavalent chromium ions (Cr6+), copper ions (Cu-EDTA), and elemental mercury (Hg0). The research progress of carbon nitride reduction and purification of heavy metal ions is summarized to provide a reference for future photocatalysis research.
Key words:  environmental pollution    g-C3N4    reduction and purification    heavy metal ions
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  O61  
基金资助: 绵阳师范学院2019年度研究生创新实践基金资助项目(CX201905)
通讯作者:  duant@ustc.edu.cn   
作者简介:  杨玥,2016年6月毕业于绵阳师范学院,获得工学学士学位。现为绵阳师范学院环境工程学院硕士研究生,在李敏教授、西南科技大学段涛教授的指导下进行研究。目前主要研究领域为有机核废液光催化降解。
Journal of Nuclear Materials、ACS Sustainable Chem. & Eng.等国内外期刊上发表SCI学术论文40多篇,合作出版学术专著2部、参编教材2部,获得专利授权15项、省级科技进步三等奖1项、地市级科技进步一、二等奖2项;主讲《核材料概论》等本科生课程,获国家优秀教育成果奖二等奖1项、四川省优秀高等教育成果奖一等奖2项、校级教学成果特等奖1项。
引用本文:    
杨玥, 赵斌, 张友魁, 李敏, 段涛. g-C3N4光催化还原净化重金属离子的研究进展[J]. 材料导报, 2020, 34(17): 17132-17138.
YANG Yue, ZHAO Bin, ZHANG Youkui, LI Min, DUAN Tao. Research Progress on Photocatalytic Reduction of Heavy Metal Ions by g-C3N4. Materials Reports, 2020, 34(17): 17132-17138.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090038  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17132
1 Fu F, Wang Q.Journal of Environmental Management,2011,92(3), 407.
2 Keng P S, Lee S L, Ha S T,et al.Environmental Chemistry Letters,2014,12(1), 15.
3 Ke D, Liu H, Peng T, et al.Materials Letters, 2008, 62(3),447.
4 Miao X, Lei H, Dong S J. ACS Applied Materials & Interfaces, 2013, 5(23),12533.
5 Teter D M, Hemley R J.Science, 1996, 271(5245),53.
6 Bai X D, Zhong D Y, Zhang G Y, et al.Applied Physics Letters, 2001, 79(10), 1552.
7 EdidiongA, Alastair M, Petrus N, et al.Journal of Environmental Chemical Engineering,2017,5, 679.
8 Vihangraj V K, Animes K G, Pranab K G. Journal of Hazardous Mate-rials,2017,341, 207.
9 MenkaKumari B D T. Ecotoxicology and Environmental Safety,2015,112, 80.
10 Yilmaz Yurekli. Journal of Hazardous Materials,2016,309, 53.
11 Li H, Lee H Y, Park G S,et al.Carbon, 2018, 129, 637.
12 Naseri A, Samadi M, Pourjavadi A, et al.Journal of Materials Chemistry A, 2017, 5(45), 23406.
13 Wu J, Li N, Zhang X H, et al. Applied Catalysis B: Environmental, 2018, 226, 61.
14 Tian L, Li J, Liang F, et al. Applied Catalysis B: Environmental, 2018, 225, 307.
15 Liu B, Ye L, Wang R, et al. ACS Applied Materials & Interfaces, 2018, 10(4), 4001.
16 Lei Z, Jian S X.Vacuum, 2010, 84, 797.
17 Fujishima A, Honda K. Nature, 1972,238, 37.
18 Liu G,Wang L,Yang H G,et al.Journal of Materials Chemistry,2010,20(5), 831.
19 Zhang Y,ChenZ,Liu S,et al.Applied Catalysis B:Environmental,2013,140-141, 598.
20 Shirzad-Siboni M, Farrokhi M,Reza D C S,et al.Industrial& Engineering Chemistry Research,2014,53(3), 1079.
21 Zhao Y, Zhang Y, Li J,et al.Separation and Purification Technology,2014,129, 90.
22 Yu J,Zhuang S,Xu X,et al.Journal of Materials Chemistry,2015,3(3), 1199.
23 Torrer-Martinez L, Moctezuma E, Ruiz-Gomez M,et al.Research on Chemical Intermediates,2012,39(4), 1533.
24 MansinghS, Padhi D K,Parida K M.Catalyis Science &Technology,2017,7(13), 2772.
25 Park S, Kim W, Selvaraj R,et al.Chemical Engineering Journal,2017,321, 97.
26 Yang W, Zhang L,Hu Y,et al.Angewandte Chemie,2012,51(46), 11501.
27 Reddy D A, Choi J,Lee S,et al.RSC Advances,2015,5(24), 18342.
28 Kush P, Deori K, Kumar A,et al.Journal of Materials Chemistry,2015,3(15), 8098.
29 Hu P, Liu X,Liu B,et al.Journal of Colloid and Interface Science,2017,496,254.
30 GaoY, Chen C, Tan X,et al.Journal of Colloid and Interface Science,2016,476, 62.
31 Wang X C, Macda K,Thomas A,et al.Nature Materials,2009, 8(1), 76.
32 KrokeE, Schwarz M, Horath-Bordon E, et al.New Journal of Chemistry, 2002, 26(5),508.
33 Edward G. Chemistryof Materials, 2000, 12(12),3906.
34 Hervé Montigaud, Bernard Tanguy, Gérard Demazeau, et al.Solid State Chemistry and Crystal Chemistry, 1997, 325(4), 229.
35 Bai Y J, Lu B, Liu Z G, et al.Journal of Crystal Growth, 2003, 247(3-4), 505.
36 Andreyev A, Akaishi M, Golberg D.Diamond and Related Materials, 2002, 11(12), 1885.
37 HorvathB E, Riedel R, Me M P F, et al.Angewandte Chemie,2010, 119(9), 1498.
38 Khabashesku V N, Zimmerman J L, Margrave J L.Chemistry of Materials, 2000, 12, 3264.
39 Ong W J,Tan L L,Ng Y H,et al.Chemical Reviews,2016,116(12), 7159.
40 Zhang G G, Zhang J S, Zhang M W, et al.Journal of Materials Chemistry, 2012, 22, 8083.
41 Takanabe K, Kamata K, Wang X C,et al.Physical Chemistry Chemical Physics,2010, 12, 13020.
42 Zhang Y W, Liu J H, Wu G, et al.Nanoscale, 2012, 4, 5300.
43 Shi L,Liang L,Wang F, et al.Catalysis Communications,2015,59, 131.
44 Sun S, Liang S.Nanoscale,2017,9, 10544.
45 Li H, Wang L,Liu Y,et al.Research on Chemical Intermediates,2015,42(5), 3979.
46 Wang Y, Wang F, ZuoY, et al.Materials Letters,2014,136,271.
47 Li J H, Shen B, Hong Z H, et al.Chemical Communications,2012, 48(98), 12017.
48 Bao N, Hu X D, Zhang Q Z, et al. Applied Surface Science,2017, 403, 682.
49 Dong G H, Zhang L Z.Chemical Communications, 2012,48, 6178.
50 Kawaguchi M, Nozaki K.Chemistry of Materials,1995, 7(2), 257.
51 Martra G.Applied Catalysis A: General, 2000,200(1), 275.
52 Masih D,MaY Y,Rohani S.Applied Catalysis B:Environmental,2017,206,556.
53 Di Y, Wang X C, Thomas A, et al.Chemcatchem, 2010, 2, 834.
54 Kuang P Y, Su Y Z, Chen G F,et al.Applied Surface Science, 2015, 358A, 296.
55 Chen F, Li D, Luo B F, et al.Journal of Alloys and Compounds, 2017, 694, 193.
56 Hong Y Z,Jiang Y H,Li C S,et al.Applied Catalysis B-Environmental,2016,180, 663.
57 Wang C C, Du X D, Li J, et al.Appllied Catalysis B Environmental, 2016, 193, 198.
58 Marinho B A, Cristovao R O, Loureiro J M, et al.Appllied Catalysis B Environmental,2016, 192, 208.
59 Salomone V N, Meichtry J M, Schinelli G.Journal of Photochemistry & Photobilogy A Chemistry, 2014, 277, 19.
60 Lu C, Zhang P, Jiang S, et al.Applied Catalysis B: Environmental, 2017, 200, 378.
61 Wu X, Jiang S, Song S, et al. Applied Surface Science, 2018,430, 371.
62 Li Shuangzhi, Zhao Qing, Liu Lijun, et al.Journal of Wuhan Textile University, 2017, 30(3), 64(in Chinese).
李双芝,赵卿,刘丽君,等.武汉纺织大学学报,2017,30(3),64.
63 Zhao Hailiang.Preparation, characterization and photocatalytic removal of methyl orange and Cr(VI) by g-C3N4/CuS composite photocatalyst.Master's Thesis, Kunming University of Science and Technology,China,2017 (in Chinese).
赵海亮.g-C3N4/CuS复合光催化剂的制备、表征及其光催化去除甲基橙和Cr(Ⅵ)性能研究.硕士学位论文,昆明理工大学,2017.
64 Xiong Wei. Study on modification of g-C3N4 and its photocatalytic reduction of Cr(VI).Master's Thesis,Anhui University of Science and Techno-logy, China, 2018(in Chinese).
熊威.g-C3N4改性及其光催化还原Cr(Ⅵ)性能研究.硕士学位论文,安徽理工大学,2018.
65 Tang Yulin, You Shaohong, Lan Huachun, et al.Journal of Environmental Science, 2018, 38(10), 3973 (in Chinese).
汤雨林,游少鸿,兰华春,等.环境科学学报,2018,38(10), 3973.
66 Zhang Z, Wu J, Liu D. Processes, 2019,7, 279.
67 Veiga L H S, Eliana C S, et al. Journal of Environmental Radioactivity,1998, 39, 69.
68 Clark D L, Hobart D E, Neu M P.Chemical Reviews,1995,95, 25.
69 Wang Y, Frutschi M, Suvorova E, et al.Nature Communications, 2013, 4, 2942.
70 Gu B, Liang L, Dickey M J, et al.Environmental Science Technology, 1998, 32, 3366.
71 Alessi D S, Lezama-Pacheco J S, Stubbs J E, et al.Geochimica et Cosmochimica Acta, 2014, 131, 115.
72 Chen T, Zhang J,Ge H L, et al.Journal of Hazardous Materials,2020,384,0304.
73 Sadik Omowunmi A, Noah Naumih M, Okello Veronica A, et al.Journal of Chemical Education, 2014, 91(2), 269.
74 Wei H T,Zhang Q,Zhang Y,et al.Applied Catalysis A-General,2016,521, 9.
75 Jampaiah D, Ippolito S, Sabri Y M, et al.Catalysis Science & Technology,2016, 6,1792.
76 Ren Yuqi.Preparation and application of graphene-like carbon nitride photocatalytic composite material.Master's Thesis, Nanchang Aeronautical University,China,2018(in Chinese).
任玉麒.类石墨烯氮化碳光催化复合材料的制备及其应用.硕士学位论文,南昌航空大学,2018.
77 Ni Jaxin.Preparation of g-C3N4/TiO2 photocatalyst and study on degradation of TCH in water under visible light.Master's Thesis, Harbin Institute of Technology,China,2019(in Chinese).
倪佳鑫.g-C3N4/TiO2光催化剂的制备及可见光下降解水中TCH研究.硕士学位论文,哈尔滨工业大学,2019.
[1] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[2] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[3] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[4] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[5] 邱军科, 王朋, 张迪, 石林, 张凰. 三维石墨烯基多孔碳材料的制备及对污染物的吸附性能研究进展[J]. 材料导报, 2020, 34(13): 13028-13035.
[6] 余慧丽, 杭祖圣, 怀旭, 黄玉安, 张春祥, 张金泉. 基于催化活性提升的g-C3N4的表面活化、敏化及功能化研究进展[J]. 材料导报, 2020, 34(11): 11121-11128.
[7] 范海波, 任启芳, 余淼, 王苏蕾, 曹镜宇, 金震, 丁益. 磷酸银/类石墨氮化碳-硅藻土复合材料的制备及可见光催化性能[J]. 材料导报, 2019, 33(20): 3383-3389.
[8] 赵文玉, 易赋淘, 甘慧慧, 张会宁, 钱勇兴, 靳慧霞, 张科锋. 氯掺杂g-C3N4纳米片光催化氧化染料污染物与还原六价铬的协同处理研究[J]. 材料导报, 2019, 33(20): 3377-3382.
[9] 梁红玉, 邹赫, 胡绍争, 李建中, 田彦文. 二元碱金属共掺杂石墨相氮化碳的制备及光催化性能评价[J]. 材料导报, 2018, 32(24): 4217-4223.
[10] 王辉, 李士君, 王梅, 裴彦博, 胡绍争. 载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的制备及光催化固氮产氨性能[J]. 材料导报, 2018, 32(20): 3496-3503.
[11] 宋晔, 缪远玲, 孟月东, 王奇. 利用等离子体技术制备和改性碳基纳米材料的研究进展[J]. 材料导报, 2018, 32(19): 3295-3303.
[12] 罗忠涛,刘垒,康少杰,王亚洲,杨久俊. 地聚合物固化/稳定有毒重金属及作用机理研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1834-1841.
[13] 阎鑫, 惠小艳, 闫从祥, 艾涛, 苏兴华, 王振军, 孙国栋, 赵鹏. 类石墨相氮化碳二维纳米片的制备及可见光催化性能研究*[J]. CLDB, 2017, 31(9): 77-80.
[14] 娄冬冬, 张丽莎, 王海风, 陈志钢. 具有三维网状结构的石墨相氮化碳/还原氧化石墨烯/钯复合材料的合成及可见光催化性能*[J]. 《材料导报》期刊社, 2017, 31(20): 1-5.
[15] 王英伍, 杨皓, 宁平, 李凯, 李山, 黄彬. 污泥基活性炭的制备及其在环境污染治理中的应用进展*[J]. 《材料导报》期刊社, 2017, 31(15): 50-59.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed