Please wait a minute...
材料导报  2019, Vol. 33 Issue (20): 3377-3382    https://doi.org/10.11896/cldb.18090036
  无机非金属及其复合材料 |
氯掺杂g-C3N4纳米片光催化氧化染料污染物与还原六价铬的协同处理研究
赵文玉1, 易赋淘1,2, 甘慧慧2, 张会宁3, 钱勇兴3, 靳慧霞3, 张科锋3
1 桂林理工大学环境科学与工程学院,桂林 514004
2 宁波大学建筑工程与环境学院,宁波 315211
3 浙江大学宁波理工学院土木建筑工程学院,宁波 315100
Synergistic Photocatalytic Dye Oxidation and Hexavalent Chromium Reduction by Chlorine Doped g-C3N4 Nanosheets
ZHAO Wenyu1, YI Futao1,2, GAN Huihui2, ZHANG Huining3, QIAN Yongxing3, JIN Huixia3, ZHANG Kefeng3
1 College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004
2 Faculty of Architecture Engineering and Environment, Ningbo University, Ningbo 315211
3 School of Civil Engineering and Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100
下载:  全 文 ( PDF ) ( 2697KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以三聚氰胺与氯化铵为前驱体,通过热缩聚法和液相超声剥离法制备了纳米片状氯掺杂石墨相氮化碳(g-C3N4),采用XRD、XPS、SEM、UV-vis等手段对样品的结构及形貌进行了表征。考察了可见光下,不同改性条件下样品对Cr(Ⅵ)和罗丹明B(RhB)混合溶液的光催化降解性能。结果表明,纳米片状氯掺杂石墨相氮化碳样品对Cr(Ⅵ)和RhB混合溶液中的Cr(Ⅵ)的光催化还原效率比单一Cr(Ⅵ)溶液中提高了2.2倍,对混合溶液中RhB的光催化降解比单一RhB溶液中提高了1.4倍。分析表明改性后的纳米片状氯掺杂氮化碳具有更大的比表面积、更好的光吸收性能和电荷分离能力,改性后的样品对混合溶液中RhB的氧化降解与Cr(Ⅵ)的还原反应同时进行也更有效地促进了光生电子-空穴对分离,从而实现了两种污染物的协同降解处理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵文玉
易赋淘
甘慧慧
张会宁
钱勇兴
靳慧霞
张科锋
关键词:  氮化碳  氯掺杂  纳米片  协同处理    
Abstract: Series of chlorine doped g-C3N4 nanosheets were synthesized by thermal condensation and ultrasonic exfoliating methods using melamine and ammonium chloride. The structural and morphological characterization of the as-prepared samples were detected by powder X-ray diffraction pattern (XRD), X-ray photoelectron spectroscope (XPS), scanning electron microscope (SEM), UV-Vis diffuse reflection spectra (UV-Vis DRS). The photocatalytic activities of samples with different doping ratio and exfoliation time were evaluated under visible light. Moreover, the mixed pollutant solution containing rhodamine B (RhB) and hexavalent chromium (Cr(Ⅵ)) were photocatalytic degraded by the modified samples. Compared with single pollutant in solution, the treatment efficiency of chlorine doped g-C3N4 nanosheets for RhB and Cr(Ⅵ) in the mixed solution enhance 1.4 times and 2.2 times, respectively. In comparison to bulk g-C3N4, chlorine doped g-C3N4 nanosheets sample possessed larger specific surface, better optical absorption performance and better charge separation capability. The separation of photo-excited holes and electrons is promoted by the simultaneously photocatalytic oxidation of RhB and reduction of Cr(Ⅵ), which lead to the synergistic treatment of RhB and Cr(Ⅵ) in mixed solution.
Key words:  carbon nitride    chlorine doping    nanosheets    synergistic treatment
               出版日期:  2019-10-25      发布日期:  2019-09-03
ZTFLH:  TQ174  
基金资助: 国家自然科学基金青年基金(51509220;21808200);浙江省教育厅一般科研项目(Y201737690);宁波市社会发展科技项目(2017C510006;2014C50007);宁波市自然科学基金项目(2018A61028)
作者简介:  赵文玉,桂林理工大学副教授,2003年硕士毕业于桂林工学院(现桂林理工大学)环境工程专业,2006年获南开大学环境工程专业博士学位,2010清华大学访问学者,2012年清华大学环境工程博士后出站。主持和参与完成了包括国家重大水专项、省部级项目、广西自然科学基金项目、广西科技攻关计划项目等20余项;以第一作者发表科研论文20余篇;作为第一申请人获得发明6项;作为参与人获得省部级科技进步奖二等奖2项及三等奖1项;出版专著1部。研究方向为废水处理理论与技术。甘慧慧,宁波大学副教授,硕士生导师,爱尔兰都柏林大学访问学者,宁波市领军和拔尖人才工程“第三层次”培养人员。2013年博士毕业于武汉理工大学,主要研究方向包括水处理高级氧化技术及新型材料开发研究,主持了包括国家自然科学基金、省自然科学基金项目及宁波市科技项目等国家、省部级及市级项目多项,在国内外重要学术期刊发表专业论文数十篇,其中SCI/EI论文近20篇,授权国家发明专利6项,担任多个学术期刊审稿人。hhgannit@163.com
引用本文:    
赵文玉, 易赋淘, 甘慧慧, 张会宁, 钱勇兴, 靳慧霞, 张科锋. 氯掺杂g-C3N4纳米片光催化氧化染料污染物与还原六价铬的协同处理研究[J]. 材料导报, 2019, 33(20): 3377-3382.
ZHAO Wenyu, YI Futao, GAN Huihui, ZHANG Huining, QIAN Yongxing, JIN Huixia, ZHANG Kefeng. Synergistic Photocatalytic Dye Oxidation and Hexavalent Chromium Reduction by Chlorine Doped g-C3N4 Nanosheets. Materials Reports, 2019, 33(20): 3377-3382.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090036  或          http://www.mater-rep.com/CN/Y2019/V33/I20/3377
1 Gan H H, Liu J, Zhang H N, et al. Research on Chemical Intermediates, 2018, 44(3), 2123.2 Wang A W, Wang C D, Fu L, et al. Nano-Micro Letters, 2017, 9(4), 47.3 Jiang L B, Yuan X Z, Pan Y, et al. Applied Catalysis B-Environmental, 2017, 217, 388.4 Jiang L B, Yuan X Z, Zeng G M, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(7), 5831.5 Zhang G G, Zhang M W, Ye X X, et al. Advanced Materials, 2014, 26(5), 805.6 Liu C Y, Zhang Y H, Dong F, et al. Applied Catalysis B-Environmental, 2017, 203, 465.7 Wan J, Hu S Z, Li F Y, et al. Asian Journal of Chemistry, 2014, 26(24), 8543.8 Zhao H X, Yu H T, Quan X, et al. RSC Advance, 2014, (4)2, 624.9 Zhao H X, Yu H T, Quan X, et al. Applied Catalysis B-Environmental, 2014, 152, 46.10 Tang L, Yang F, Zeng G M, et al. Chemical Engineering Journal, 2014, 254, 302.11 Niu P, Zhang L L, Liu G, et al. Advanced Functional Materials, 2013, 22(22), 4763.12 Zhou Y J, Zhang L X, Liu J J, et al. Journal of Materials Chemistry A, 2015, 3, 3862.13 Ye L Q, Liu J Y, Jiang Z, et al. Applied Catalysis B-Environmental, 2013, 142, 1.14 Yang X F, Chen Z P, Xu J S, et al. ACS Applied Materials & Interfaces, 2015, 7 (28), 15285.15 Jiang L B,Yuan X Z, Zeng G M, et al. Applied Catalysis B-Environmental, 2018, 221, 715.16 Wang H, Wang B, Bian Y R, et al. ACS Applied Materials & Interfaces, 2017, 9(26), 21730.17 Wang N, Zheng A Q, Liu X, et al. ACS Applied Materials & Interfaces, 2018, 10(9), 7901.18 Liu X L, Xu K, Chen P Z, et al. Journal of Materials Chemistry A, 2014, 44, 18924.19 Xu Z, Yu X G, Shan Y, et al. Journal of Inorganic Materials, 2017, 32(2), 155(in Chinese).徐赞, 于薛刚, 单妍, 等.无机材料学报, 2017, 32(2),155.20 Wang H, Yuan X Z, Wang H, et al. Applied Catalysis B-Environmental, 2016, 193, 36.21 Dong F, Zhao Z W, Xiong T, et al. ACS Applied Materials & Interfaces, 2013, 5, 11392.22 Yu J G, Yu H G, Cheng B, et al. Journal of Phsical Chemistry B, 2003, 107(50), 13871.23 Guo Y, Li J H, Gao Z Q, et al. Applied Catalysis B-Environmental, 2016, 192, 57.24 Deng Y C, Tang L, Zeng G M, et al. Applied Catalysis B-Environmental, 2017, 203, 343.25 Xiao J D, Xie Y B, Cao H B, et al. Catalysis Communication, 2015, 66, 10.26 Hu S Z, Ma L, Xie Y, et al. Dalton Transaction, 2015, 44, 2088927 He Y M, Zhang L H, Wang X M, et al. RSC Advance, 2014, 4(26), 13610.28 Qiu P X, Xu C M, Chen H, et al. Applied Catalysis B-Environmental, 2017, 206, 319.29 Liu J, Liu Y, Liu N Y, et al. Science, 2015, 347(6225), 970.30 Sun M, Li S L, Yan T, et al. Journal of Hazardous Materials, 2017, 333, 169.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 范海波, 任启芳, 余淼, 王苏蕾, 曹镜宇, 金震, 丁益. 磷酸银/类石墨氮化碳-硅藻土复合材料的制备及可见光催化性能[J]. 材料导报, 2019, 33(20): 3383-3389.
[3] 马浩, 杨瑞霞, 李春静, 韩应宽. 二硫化钼纳米片的制备及其光敏和气敏特性研究[J]. 材料导报, 2018, 32(6): 860-864.
[4] 梁红玉, 邹赫, 胡绍争, 李建中, 田彦文. 二元碱金属共掺杂石墨相氮化碳的制备及光催化性能评价[J]. 材料导报, 2018, 32(24): 4217-4223.
[5] 王辉, 李士君, 王梅, 裴彦博, 胡绍争. 载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的制备及光催化固氮产氨性能[J]. 材料导报, 2018, 32(20): 3496-3503.
[6] 袁秋红,周国华,廖 琳. 石墨烯纳米片/AZ91镁基复合材料的显微组织与力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1663-1667.
[7] 阎鑫, 惠小艳, 闫从祥, 艾涛, 苏兴华, 王振军, 孙国栋, 赵鹏. 类石墨相氮化碳二维纳米片的制备及可见光催化性能研究*[J]. CLDB, 2017, 31(9): 77-80.
[8] 吴益华,黄婧,吴迪,陈中珍,李丹,朱志刚,施惟恒,. 反应时间对CH3NH3PbBr3钙钛矿纳米晶形貌及荧光性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 1-4.
[9] 张鸿宇,李治应,曾蓉,. 高效温和制备纳米片状β-Co(OH)2用于超级电容器电极[J]. 材料导报编辑部, 2017, 31(22): 15-20.
[10] 娄冬冬, 张丽莎, 王海风, 陈志钢. 具有三维网状结构的石墨相氮化碳/还原氧化石墨烯/钯复合材料的合成及可见光催化性能*[J]. 《材料导报》期刊社, 2017, 31(20): 1-5.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed