Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1663-1667    https://doi.org/10.11896/j.issn.1005-023X.2018.10.018
  材料研究 |
石墨烯纳米片/AZ91镁基复合材料的显微组织与力学性能
袁秋红,周国华,廖 琳
宜春学院物理科学与工程技术学院,宜春 336000
Microstructure and Mechanical Properties of Graphene Nanosheets Reinforced AZ91 Alloy Matrix Composite
YUAN Qiuhong, ZHOU Guohua, LIAO Lin
Physical Science and Technology College, Yichun University, Yichun 336000
下载:  全 文 ( PDF ) ( 3444KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用铸造工艺制备了石墨烯纳米片(GNPs)增强的AZ91镁基复合材料,测试了复合材料的力学性能,并利用光学显微镜、X射线衍射仪、透射电子显微镜、扫描电子显微镜和能谱仪对复合材料的微观组织、界面结合和断口形貌进行了表征和分析,讨论了复合材料的强化机理。结果表明:石墨烯纳米片可有效细化镁基体的晶粒组织,在添加少量石墨烯纳米片时(0.1%),复合材料的屈服强度、延伸率和显微硬度分别为(164±5) MPa、(7.7±0.1)%和(74.2±2)HV,比基体分别提高了37.8%、13.2%和24.7%。GNPs与镁基体形成了强界面结合,这更有利于发挥应力转移强化、细晶强化等作用,提高镁合金强度、塑性等力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁秋红
周国华
廖 琳
关键词:  铸造工艺  AZ91镁合金  石墨烯纳米片  复合材料  力学性能    
Abstract: Graphene nanosheets (GNPs) reinforced AZ91 alloy matrix composite was fabricated by a casting method. The mechanical properties of the composite were tested. The microstructure, interfacial bonding structure and fractographs of the as-cast composite were characterized and analyzed via optical microscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS). The strengthening mechanism of GNPs/AZ91 composite was discussed in detail. The results showed that GNPs can effectively refine the grain sized of AZ91 alloy. The yield strength, elongation and microhardness of AZ91-0.1GNPs composite was (164±5) MPa,(7.7±0.1)% and (74.2±2)HV, increasing by 37.8%,13.2% and 24.7%, respectively, compared to that of as-cast AZ91 alloy. A strong interfacial bonding between GNPs and the matrix of α-Mg have been formed, which is beneficial to the fine-grain strengthening, stress transfer strengthening and so on, resulting in a significant improvement in the tensile strength, ductility and other mechanical properties of magnesium alloy.
Key words:  casting method    AZ91 magnesium alloy    graphene nanosheets    composite    mechanical properties
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG146.2+2  
  TB333  
基金资助: 国家自然科学基金(51761037);江西省教育厅科技项目
作者简介:  袁秋红:男,1981年生,博士,讲师,研究方向为纳米碳材料增强镁基复合材料 E-mail:Yuanqiuhong@126.com
引用本文:    
袁秋红,周国华,廖 琳. 石墨烯纳米片/AZ91镁基复合材料的显微组织与力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1663-1667.
YUAN Qiuhong, ZHOU Guohua, LIAO Lin. Microstructure and Mechanical Properties of Graphene Nanosheets Reinforced AZ91 Alloy Matrix Composite. Materials Reports, 2018, 32(10): 1663-1667.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.018  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1663
1 Chen L Y, Xu J Q, Choi H,et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles[J]. Nature,2015,528(7583):539.
2 Shin S E, Choi H J, Hwang J Y, et al. Strengthening behavior of carbon/metal nanocomposites[J]. Scientific Reports,2015,5(16114):1.
3 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
4 Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano letters,2008,8(3):902.
5 Yuan Q H, Zhou G H, Liao L, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets[J]. Carbon,2017,127:177.
6 Rashad M, Pan F, Asif M. Exploring mechanical behavior of Mg-6Zn alloy reinforced with graphene nanoplatelets[J]. Materials Science & Engineering A,2016,649:263.
7 Das A, Harimkar S P. Effect of graphene nanoplate and silicon carbide nanoparticle reinforcement on mechanical and tribological pro-perties of spark plasma sintered magnesium matrix composites[J]. Journal of Materials Science & Technology,2014,30(11):1059.
8 Rashad M, Pan F, Asif M, et al. Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) [J]. Journal of Industrial & Engineering Chemistry,2014,20(6):4250.
9 Rashad M, Pan F, Tang A, et al. Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method[J]. Journal of Industrial & Engineering Chemistry,2015,23(25):243.
10 Li G, Xiong B. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites[J]. Journal of Alloys & Compounds,2017,697(15):31.
11 Yuan Qiuhong, Zou Shaoming, Xiong Jianqiang, et al. Mechanical properties of AZ91D alloy reinforced by carbon nanotubes coated MgO [J]. Special Casting and Nonferrous Alloys,2014,34(12):1307(in Chinese).
袁秋红,邹韶明,熊建强,等.氧化镁包覆CNTs增强的AZ91D基复合材料的力学性能[J].特种铸造及有色合金,2014,34(12):1307.
12 Yang Yonggang, Chen Chengmeng, et al. Oxidized graphene and graphene based polymer composites[J]. New Carbon Materials,2008,23(3):193(in Chinese).
杨永岗,陈成猛,等.氧化石墨烯及其与聚合物的复合[J].新型炭材料,2008,23(3):193.
13 Yuan Qiuhong, Zeng Xiaoshu,Qi Daohua. Mechanical properties and microstructure of carbon nanotubes(CNTs)/ZM5-T4 alloy compo-sites[J]. Special Casting and Nonferrous Alloys,2007,27(12):963(in Chinese).
袁秋红,曾效舒,戚道华.T4态CNTs/ZM5复合材料的研究[J].特种铸造及有色合金,2007,27(12):963.
14 Yuan Qiuhong, Zeng Xiaoshu, et al. Preparation and mechanical properties of graphene nanosheets reinforced AZ91 alloy composites[J]. Special Casting and Nonferrous Alloys,2016,36(3):282(in Chinese).
袁秋红,曾效舒,等.石墨烯纳米片/AZ91镁基复合材料制备与力学性能[J]. 特种铸造及有色合金,2016,36(3):282.
15 Xu Qiang, Zeng Xiaoshu, Zhou Guohua. Mechanical properties of CNTs/AZ31 composites prepared by adding CNTs block with plun-ger[J]. The Chinese Journal of Nonferrous Metals,2010,20(2):189(in Chinese).
徐强,曾效舒,周国华.钟罩浸块铸造法制备的 CNTs/AZ31 镁基复合材料的力学性能[J].中国有色金属学报,2010,20(2):189.
16 Xiang S, Wang X, Gupta M, et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties[J]. Scientific Reports,2016,6(12):38824.
17 Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO[J]. Carbon,2016,96(1):843.
18 Ganesh V V, Chawla N. Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: Experiments and microstructure-based simulation[J]. Materials Science & Enginee-ring A,2005,391(1-2):342.
19 Zhang Z, Chen D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength[J]. Scripta Materialia,2006,54(7):1321.
20 Bakshi S R, Agarwal A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon,2011,49(2):533.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[7] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[8] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[9] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[10] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[11] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[12] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[13] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[14] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[15] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed