Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3295-3303    https://doi.org/10.11896/j.issn.1005-023X.2018.19.002
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
利用等离子体技术制备和改性碳基纳米材料的研究进展
宋晔1,2,缪远玲1,孟月东1,王奇1,2
1 中国科学院光伏与节能材料重点实验室,中科院等离子体物理研究所,合肥 230031;
2 中国科学院大学物理科学学院,北京 100049
Synthesizing and Modifying Carbon-based Nanomaterials by Plasma Techniques
SONG Ye1,2, MIAO Yuanling1, MENG Yuedong1, WANG Qi1,2
1 Key Laboratory of Photovoltaic and Energy Conservation Materials,Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031;
2 School of Physical Science, University of Chinese Academy of Sciences,Beijing 100049
下载:  全 文 ( PDF ) ( 2528KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米材料如碳纳米管、石墨烯等具有超高的电导率、良好的力学强度及大的比表面积,近年来对它们的研究重点由碳纳米材料自身的性能逐渐扩展到碳纳米材料衍生物及碳基纳米复合材料的构建、性质及应用。碳基纳米材料的传统合成方法主要是化学法和电化学法,但步骤较繁琐、容易引入杂质元素等缺点制约了这些传统方法的进一步发展。作为一种制备与处理纳米材料的全新方法,等离子体技术得到了越来越广泛的关注。
利用等离子体技术合成与改性碳基纳米材料的研究方向主要有:(1)通过改进等离子体源,提高其稳定性及工作效率,使其更适合制备和处理碳基纳米材料;(2)通过与不同的异质纳米材料复合,改善碳基纳米材料的物理化学性能;(3)拓展碳基纳米材料在环境保护和其他领域的应用。
研究发现,相比于传统合成方法,等离子体技术具有较少引入杂质、产物催化活性较高、反应时间较短等特点。特别是低功率低气压条件下的电感耦合等离子体源,其对碳纳米材料的损伤较小,通过改变等离子体气氛,可以有效地还原或氧化碳纳米材料,这不仅去除了碳纳米材料表面的有害基团,还在其表面引入有益的化学基团,极大地提高材料的水溶性和吸附性能。直流等离子体源在大气压条件下可以稳定放电,通过改变功率和气体流速等参数可以有效控制碳纳米材料的生长方向,得到具有特殊性质的碳纳米柱或石墨烯墙。电子回旋共振等离子源有较好的稳定性,处理时几乎不会引入杂质元素,可以用于制备高精度的电子元器件。采用这些改进后的等离子体源可以将金属或有机物大分子基团负载于碳纳米材料表面,得到的衍生物能够更好地吸附环境污染物。通过等离子体技术能够将高导电率的铂粒子与碳纳米材料复合,并提高铂粒子在碳纳米材料表面的分散,这可以赋予铂粒子抗一氧化碳中毒的特性,可用作高性能燃料电池催化剂。此外,经等离子体改性的碳基纳米材料用于污染物传感器时具有较高的灵敏度和力学强度。
本文主要介绍了近些年等离子体技术在碳纳米材料、碳纳米材料衍生物及碳基纳米复合材料的合成与改性方面的研究进展,归纳了经等离子体技术合成或改性的碳基纳米材料在环境保护、燃料电池催化剂、传感器等方面的应用尝试。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋晔
缪远玲
孟月东
王奇
关键词:  等离子体  碳纳米材料  衍生物  复合材料  重金属离子  有机污染物  燃料电池催化剂  传感器    
Abstract: The research upon carbon nanomaterials, such as carbon nanotubes and graphene, has nowadays been extended from their properties to the construction, characteristics and application of carbon nanomaterial derivatives and carbon-based nanocomposites owing to carbon nanomaterials’ ultra-high conductivity, favorable mechanical strength and high specific surface area. Hence the methodology for obtaining and modifying carbon-based nanomaterials has drawn widening attention in recent years. The traditional synthesis methods, mainly including chemical synthesis and electrochemical synthesis, are limited by their deficiencies of complicated procedure and easy contamination by impurity elements. As a kind of newly developed synthesis methods of nanomate-rials, plasma-assisted techniques have been preliminarily found to be satisfactory for synthesis and modification of carbon-based nanomaterials.
The research directions of plasma-assisted synthesis and modification of carbon-based nanomaterials include the following aspects. Ⅰ.Enhance plasma stability and efficiency by improving the plasma source to make it adaptable for carbon-based nanomate-rials. Ⅱ.Elevate physical and chemical properties of carbon-based nanomaterials by composing with various hetero-substances. Ⅲ.Expand the appliance of carbon-based nanomaterials in environmental protection and other fields.
Plasma techniques enjoy the advantages such as low impurity introduction, high catalytic activity of product and shorter reaction time consumption compared with the traditional synthesis methods of carbon nanomaterials. An exemplary plasma source for plasma-assisted techniques is inductively coupled plasma source with low power and low pressure. It causes little damage, and can implement oxidation or reduction of carbon-based nanomaterials, and in consequence, both removal of negative groups and integration with positive groups, which result in extraordinarily promoted water solubility and adsorptivity. The direct current plasma source can discharge steadily under atmospheric pressure, and can help to effectively control the growth orientation and to obtain carbon nanopillars or vertical graphene with particular characteristics by adjusting discharge power and gas source flow rate. Electron cyclotron resonance plasma source has good stability and can virtually ensure exemption of carbon nanomaterials from impurity contamination, thereby applicable for the manufacture of high-precision electronic components. By adopting these improved plasma sources, we can incorporate metals or organic macromolecular groups into carbon nanomaterials to fabricate derivatives with enhanced performance of pollutants removal from sewage water. Moreover, the plasma techniques can also realize the combination of platinum nanoparticles and carbon nanomaterials, and can achieve fine distribution of Pt. This will impart CO-poisoning resistance to Pt nanoparticles, and enable the usage as high-performance catalysts of fuel cells. Additionally, the pollutant-monitoring sensors can be improved by adopting highly sensitive and high-strength carbon-based nanomaterials which can be prepared by plasma-assisted modification.
This paper provides a profound insight to the adoption of plasma techniques in synthesis and modification of carbon nanomate-rials (and derivatives) and carbon-based nanocomposites. It also gives a summary description of the trial applications of these plasma-synthesized or plasma-treated carbon-based nanomaterials to environment protection, fuel cell catalysts and sensors.
Key words:  plasma    carbon nanomaterial    derivative    composite material    heavy metal ion    organic pollutant    fuel cell catalyst    sensor
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  O539  
基金资助: 国家自然科学基金(11575253);安徽省杰出青年科学基金(1608085J03);安徽省重点研发计划(1704a0902017);中科院合肥研究院院长基金(YZJJ201505);中国科学院光伏与节能材料重点实验室青年人才课题(PECL2018QN005);中科院青年创新促进会(2015262)
作者简介:  宋晔:男,1986年生,博士研究生,从事等离子体物理研究;王奇:通信作者,1979年生,男,博士,副研究员,研究方向为石墨烯材料制备及其在能源、环境、生物医药中的应用 E-mail:none227@126.com
引用本文:    
宋晔, 缪远玲, 孟月东, 王奇. 利用等离子体技术制备和改性碳基纳米材料的研究进展[J]. 材料导报, 2018, 32(19): 3295-3303.
SONG Ye, MIAO Yuanling, MENG Yuedong, WANG Qi. Synthesizing and Modifying Carbon-based Nanomaterials by Plasma Techniques. Materials Reports, 2018, 32(19): 3295-3303.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.002  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3295
1 Wang Q, Wang X, Chai Z, et al. Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications[J].Chemical Society Reviews,2013,42(23):8821.
2 Zhao W H, Tian K, Liu D, et al. Fluctuation phenomenon analysis of an arc plasma spraying jet[J].Chinese Physics Letters,2010,18(8):1092.
3 Ni G, Meng Y, Cheng C, et al. Characteristics of a novel water plasma torch[J].Chinese Physics Letters,2010,27(5):055203.
4 Kuok Fei-Hong, Kan Ken-Yuan, Yu Ing-Song, et al. Application of atmospheric-pressure plasma jet processed carbon nanotubes to liquid and quasi-solid-state gel electrolyte supercapacitors[J].Applied Surface Science,2017,425:321.
5 Brenner I B, Zander A T. Axially and radially viewed inductively coupled plasmas a critical review[J].Spectrochimica Acta B,2000,55(8):1195.
6 Ren X, Shao D, Zhao G, et al. Plasma induced multiwalled carbon nanotube grafted with 2-vinylpyridine for preconcentration of Pb(Ⅱ) from aqueous solutions[J].Plasma Processes & Polymers,2011,8(7):589.
7 Chen C, Liang B, Lu D, et al. Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment[J].Carbon,2010,48(4):939.
8 Iijima S. Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56.
9 Shao D, Jiang Z, Wang X, et al. Plasma induced grafting carboxy-methyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution[J].The Journal of Physical Chemistry B,2008,113(4):860.
10 Shao D, Ren X, Hu J, et al.Preconcentration of Pb2+ from aqueous solution using poly(acrylamide) and poly(N,N-dimethylacrylamide) grafted multiwalled carbon nanotubes[J].Colloid Surface A,2010,360(1-3):74.
11 Song Y, Wang Q, Meng Y. Plasma syntheses of carbon nanotube-supported Pt-Pd nanoparticles[J].Plasma Science & Technology,2016,18(4):438.
12 Wang Q, Song M, Chen C, et al. Plasma synthesis of surface-functionalized graphene-based platinum nanoparticles: Highlyactive electrocatalysts as electrodes for direct methanol fuel cells[J].ChemPlusChem,2012,77(6):432.
13 Zhao G, Shao D, Chen C, et al. Synthesis of few-layered graphene by H2O2 plasma etching of graphite[J].Applied Physics Letters,2011,98(18):183114.
14 Wang X, Dai H. Etching and narrowing of graphene from the edges[J].Nature Chemistry,2010,2(8):661.
15 Helland A, Wick P, Koehler A, et al. Reviewing the environmental and human health knowledge base of carbon nanotubes[J].Environmental Health Perspectives,2007,115(8):1125.
16 Farid Muhammad Usman, Luan Hong-Yon,Wang Yifei. Increased adsorption of aqueous zinc species by Ar/O2 plasma-treated carbon nanotubes immobilized in hollow-fiber ultrafiltration membrane[J].Chemical Engineering Journal,2017,325:239.
17 Shao D, Hu J, Wang X, et al. Removal of 4,4′-dichlorinated biphenyl from aqueous solution using methyl methacrylate grafted multiwalled carbon nanotubes[J].Chemosphere,2011,82(5):751.
18 Shao D, Hu J, Wang X. Plasma induced grafting multiwalled carbon nanotube with chitosan and its application for removal of UO22+, Cu2+, and Pb2+ from aqueous solutions[J].Plasma Processes & Polymers,2010,7(12):977.
19 Shao D, Jiang Z, Wang X. SDBS modified XC-72 carbon for the removal of Pb(Ⅱ) from aqueous solutions[J].Plasma Processes & Polymers,2010,7(7):552.
20 Yang S, Hu J, Chen C, et al. Mutual effects of Pb(Ⅱ) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions[J].Environmental Science & Technology,2011,45(8):3621.
21 Shao D, Chen C, Wang X, et al. Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb(Ⅱ)[J].Chemical Engineering Journal,2012,185:114.
22 Wang Q, Chen L, Sun Y, et al. Removal of radiocobalt from aqueous solution by oxidized MWCNT[J].Journal of Radioanalytical & Nuclear Chemistry,2012,291(3):787.
23 Hu J, Shao D, Chen C, et al. Plasma-induced grafting of cyclodextrin onto multiwall carbon nanotube/iron oxides for adsorbent application[J].The Journal of Physical Chemistry B,2010,114(20):6779.
24 Shao D, Hu J, Chen C, et al. Polyaniline multiwalled carbon nanotube magnetic composite prepared by plasma-induced graft technique and its application for removal of aniline and phenol[J].Journal of Physical Chemistry C,2010,114(49):21524
25 Li J,Chen C, Wang X, et al. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions[J].Chemistry an Asian Journal,2015,10(6):1410.
26 Wang Q, Li J, Song Y, et al. Facile synthesis of high-quality plasma-reduced graphene oxide with ultrahigh 4,4′-dichlorobiphenyl adsorption capacity[J].Chemistry an Asian Journal,2013,89(1),225.
27 Shao D, Sheng G, Chen C, et al. Removal of polychlorinated biphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes[J].Chemosphere,2010,79(7):679.
28 Hu J, Shao D, Chen C, et al. Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin composite[J].Journal of Hazardous Materials,2011,185(1):463.
29 Shao D, Hu J, Wang X, et al. Plasma induced grafting multiwall carbon nanotubes with chitosan for 4,4′-dichlorobiphenyl removal from aqueous solution[J].Chemical Engineering Journal,2011,170(2-3):498.
30 Hosseini Seyed Iman, Farrokhi Naser, Shokri Khadijeh, et al. Cold low pressure O2 plasma treatment of Crocus sativus: An efficient way to eliminate toxicogenic fungi with minor effect on molecular and cellular properties of saffron[J].Food Chemistry,2018,257:310.
31 Kim Ji Hyeon, Min Sea C. Moisture vaporization-combined helium dielectric barrier discharge-cold plasma treatment for microbial decontamination of onion flakes[J].Food Control,2018,84:321.
32 Timmons Chris, Pai Kedar, Jacob Jamey, et al. Inactivation of Salmonella enterica, Shiga toxin-producing Escherichia coli, and Listeriamonocytogenes by a novel surface discharge cold plasma design[J].Food Control,2018,84:455.
33 Guo C, Xu N, Zhang Y, et al. One-step growth of graphene-carbon nanotube trees on 4 ″ substrate and characteristics ofsingle individual tree[J].Carbon,2017,125:189.
34 Wu Angjian, Li Xiaodong, Yang Jian, et al. Upcycling waste lard oil into vertical graphene sheets by inductively coupled plasma assisted chemical vapor deposition[J].Nanomaterials,7(10):318.
35 Chen P C, Jing S Y, Chu Y H, et al. Improved fracture toughness of CNTs/SiC composites by HF treatment[J].Journal of Alloys and Compounds,2018,730:42.
36 Farid Muhammad Usman, Luan Hong-Yon, Wang Yifei, et al. Increased adsorption of aqueous zinc species by Ar/O2- plasma-treated carbon nanotubes immobilized in hollow-fiber ultrafiltration membrane[J].Chemical Engineering Journal,2017,325:239.
37 Chang Q X, Zhao H J, He R Q. The mechanical properties of plasma-treated carbon fiber reinforced PA6 composites with CNT[J].Surface and Interface Analysis,2017,49(12):1244.
38 Li R H, Li K Q, Tian H Y, et al. Mechanical properties of plasma-treated carbon fiber reinforced PTFE composites with CNT[J].Surface and Interface Analysis,2017,49(11):1064.
39 Shin Dong-Wook, Kim Tae Sung, Yoo Ji-Beom. Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments[J].Materials Research Bulletin,2016,82:71.
40 Raut Suyog A, Mutadak Pallavi R, Kumar Shiv, et al. Single step, phase controlled, large scale synthesis of ferrimagnetic iron oxide polymorph nanoparticles by thermal plasma route and their rheological properties[J].Journal of Magnetism and Magnetic Materials,2018,449:232.
41 Liu H X, Wang C B, Wu L, et al. Effect of Ho-doping on structu-ral, electrical and magnetic properties of La0.7Sr0.3MnO3 ceramics prepared by plasma-activated sintering[J].Journal of Materials Science,2018,53(4):2375.
42 Wang Q, Song M, Chen C, et al. Synthesis of graphene-based Pt nanoparticles by a one-step in situ plasma approach under mild conditions[J].Applied Physics Letters,2012,101(3):033103.
43 Zhang C, Hu J, Wang X, et al. High performance of carbon nanowall supported Pt catalyst for methanol electro-oxidation[J].Carbon,2012,50(10):3731.
44 Sharma Pratibha, Kumar Ashok, Sahu Vinita. Theoretical evaluation of global and local electrophilicity patterns to characterize hetero-diels-alder cycloaddition of three-membered 2H-azirine ring system[J].Journal of Physical Chemistry A,2010,114(2):1032.
45 Zhang S, Niu H, Lan Y, et al. Synthesis of TiO2 nanoparticles on plasma-treated carbon nanotubes and its application in photoanodes of dye-sensitized solar cells[J].The Journal of Physical Chemistry C,2011,115(44):22025.
46 Khan Saeed Ahmed, Gao Min, Zhu Yuechang, et al. MWCNTs based flexible and stretchable strain sensors[J].Journal of Semiconductors,2017,38(5):053003-1.
47 Lourencao Bruna C, Pinheiro Romario A, Silva Tiago A, et al. Porous boron-doped diamond/CNT electrode as electrochemical sensor for flow-injection analysis applications[J].Diamond and Related Materials,2017,74:182.
48 Cui J, Zhang B, Duan J, et al. Flexible pressure sensor with Ag wrinkled electrodes based on PDMS substrate[J].Sensors,2016,16(12):2131.
49 Kim Min-Ki, Kim Myoung-Soo, Kwon Hong-Bum, et al. Wearable triboelectric nanogenerator using a plasma-etched PDMS-CNT composite for a physicalactivity sensor[J].RSC Advances,2017,7(76):48368.
50 Bo Z, Yuan M, Mao S, et al. Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature forma-ldehyde sensing[J].Sensors and Actuators B-Chemical,2018,256:1011.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[7] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[8] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[9] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[10] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[11] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[12] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[13] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[14] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[15] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed