Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3281-3294    https://doi.org/10.11896/j.issn.1005-023X.2018.19.001
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
静电纺丝在高效可逆离子电池储能中的应用
杜敏,宋滇,谢玲,周愉翔,李德生,朱纪欣
南京工业大学江苏省柔性电子重点实验室,江苏国家先进材料协同创新中心,先进材料研究院,南京 210009
Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage
DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin
Key Laboratory of Flexible Electronics, Jiangsu National Synergetic Innovation Center for Advanced Materials,Institute of Advanced Materials, Nanjing Tech University, Nanjing 210009
下载:  全 文 ( PDF ) ( 6288KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高效、稳定、低成本可逆离子电池的研究对大型能源存储、便携电子设备、电动汽车、航空航天以及生态环境等领域的发展有着重大意义。可逆离子电池电极材料的微纳设计与结构调控是其高性能化的重要途径。静电纺丝制备功能微纳电极材料具有以下优势:(1)一维构筑单元有利于电子快速传导;(2)微纳化构筑单元具有短的离子扩散距离和高电极/电解液接触比表面积;(3)三维网络骨架结构可有效降低电极结构破坏。同时,通过调节静电纺丝体系参数可实现电极材料的结构、组分、尺寸、表面修饰、掺杂等参量可控制备。
非金属(如Si、Ge)、金属(如Sn、Sb)以及过渡金属氧化物(如SnO2、Fe2O3、Co3O4)、金属硫化物(如MoS2、Co9S8)负极材料以及磷酸盐(如LiFePO4、Li3V2(PO4)3)因具有高的理论比容量和能量密度等优点而被广泛地应用于超级电容器、离子电池(锂离子电池、钠离子电池、锂硫电池)等新一代储能器件中。然而,低导电性、高体积膨胀率等使得这类材料的倍率性能和使用寿命极大降低,制约了它们的商业化应用前景。基于碳材料(非晶碳、碳纳米管、石墨烯)以及导电聚合物设计制备不同微纳结构的碳基和聚合物基复合材料可有效解决以上难题,提高其储能性能。静电纺丝技术可以通过设计纺丝装置,调控纺丝前驱液的浓度,结合超声磁力搅拌促进纳米颗粒均匀分散以及高温热解等参量调控,有效制备得到自支撑纺丝碳基纤维复合材料。

近年来,基于静电纺丝制备的柔性自支撑结构材料被广泛应用于能源存储领域,包括超级电容器、隔膜材料、离子电池等。然而,不同聚合物静电纺丝条件有较大差异,主要由聚合物的分子量大小、带电基团分布、亲疏水性、溶剂、溶液粘度等参量所决定。聚合物静电纺丝的前驱液主要为水溶性高分子与非水溶性高分子,溶剂通常为N,N-二甲基甲酰胺、乙醇等。聚合物与金属盐常被用于静电纺丝制备微纳复合纤维材料,通过调节纺丝参量(如聚合物溶液粘度、溶剂种类、电压、针尖与接收装置之间的距离、聚合物输运速率、温度以及湿度等) 对其结构特性进行精确调控,实现储能容量和稳定性的双提升。

本文将主要从以下几个方面介绍静电纺丝在可逆离子电池储能中的应用:静电纺丝技术进展,静电纺丝微纳材料在可逆离子电池中的应用,以及该领域研究的总结与展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜敏
宋滇
谢玲
周愉翔
李德生
朱纪欣
关键词:  静电纺丝  纺丝纤维  锂离子电池  钠离子电池    
Abstract: The high efficiency, stability and low cost are indispensable to the reversible ion batteries, especially on the large energy storage systems, portable electronic equipment, electric vehicles, aerospace and ecological environment. Micro-nano designs and morphologies control of the electrode materials are important to achieve a high energy storage performance. The micro-nano electrode materials which were fabricated using electrospinning method have the following advantages. Ⅰ.The one-dimensional construction unit is conducive to electrons rapid transfer. Ⅱ.The micro-nano construction unit has shortened ion diffusion distance and increased electrode/electrolyte contact surface area. Ⅲ.Three-dimensional network skeleton can ease the tension and effectively protect the electrode structure. At the same time, the structure, composition, dimension, surface modification, doping and other properties of electrode materials can be modified by adjusting the electrospinning parameters.
Non-metallic (e.g. Si, Ge), metals (e.g. Sn, Sb), transition metal oxides (e.g. SnO2, Fe2O3, Co3O4), metal sulfides (e.g. MoS2, Co9S8) and phosphate (e.g. LiFePO4, Li3V2(PO4)3) are widely used in super capacitor, ion batteries (lithium ion batteries, sodium ion batteries, lithium sulfur batteries), and newly generated energy storage devices because of their advantages such as high theoretical specific capacity and energy density. However, the low conductivity and high volume expansion have largely affected its rate performance and reduced cycling life, restricted its commercialization developments. The combinations of the carbon materials (amorphous carbon, carbon nanotubes, and graphene) with the conducting polymers are promoted to solve the above problems and improve the energy storage performance. Electrospinning technology is one of the methods to control the morphology of the hybrid micro-nano structures. We can fabricate the self-supported spinning fiber composite materials through designing spinning device, controlling the spinning concentration, promoting the nanoparticles dispersion and adjusting the pyrolysis process.
In recent years, flexible self-supported materials based on electrospinning have been widely used in energy storage, including super capacitor, separator material, ion batteries and so on. However, the electrospinning conditions and parameters differ from polymers, which are mainly determined by the molecular weight of the polymers, the distribution of charged groups, hydrophobicity, solvents and solution viscosity. The precursor electrospinning polymers are mainly divided into water-soluble and non-water-soluble, and the ordinary solvent concludes N, N-dimethylformamide, ethanol, etc. Polymers and metallic salts are often used in electrospinning to prepare micro-nano composite fibers, by adjusting the spinning parameters, such as the viscosity of polymer solution, voltage levels, the distance between the tip and receiving device, polymer transport rate, temperature and humidity to precise control its structural characteristics, realizing the enhancement of the energy storage performance and the cycling stability.
Key words:  electrospinning    spinning fibers    lithium ion batteries    sodium ion batteries
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TM911  
基金资助: 国家自然科学基金(21501091);江苏省自然科学基金(BK20170045);“千人计划”青年项目(1211019);国家重点基础研究项目(973)(2015CB932200);江苏省“六大人才高峰” (XCL-043)
作者简介:  杜敏:女,1993年生,硕士研究生,主要研究方向为纳米储能材料 E-mail:dumin@njtech.edu.cn; 朱纪欣:通信作者,男,1980年生,博士,教授,主要从事先进材料全优构建与设计,清洁能源制备与能源存储,柔性与可穿戴电子器件等多交叉学科研究工作 E-mail:iamjxzhu@njtech.edu.cn;
引用本文:    
杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage. Materials Reports, 2018, 32(19): 3281-3294.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.001  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3281
1 Liu W,Song M S,Kong B, et al. Flexible and stretchable energy storage: Recent advances and future perspectives[J].Advanced Materials,2017,29(1):1603436.
2 Lü H Y,Zhang X H,Wan F, et al. Flexible P-doped carbon cloth: Vacuum-sealed preparation and enhanced Na-storage properties as binder-free anode for sodium ion batteries[J].ACS Applied Materials & Interfaces,2017,9(14):12518.
3 Chen L F,Feng Y,Liang H W, et al. Macroscopic-scale three-dimensional carbon nanofiber architectures for electrochemical energy sto-rage devices[J].Advanced Energy Materials,2017,7(23):1700826.
4 Wang X,Li G,Seo M H, et al. Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries[J].ACS Applied Materials & Interfaces,2017,9(11):9551.
5 Yao H,Zheng G,Hsu P C, et al. Improving lithium-sulphur batte-ries through spatial control of sulphur species deposition on a hybrid electrode surface[J].Nature Communications,2014,5:3943.
6 Luo C J,Stoyanov S D,Stride E, et al. Electrospinning versus fibre production methods: From specifics to technological convergence[J].Chemical Society Reviews,2012,41(13):4708.
7 Guo X,Zhang X,Song H, et al. Electrospun cross-linked carbon nanofiber films as free-standing and binder-free anodes with superior rate performance and long-term cycling stability for sodium ion sto-rage[J].Journal of Materials Chemistry A,2017,5(40):21343.
8 Jin T,Liu Y,Li Y, et al. Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries[J].Advanced Energy Materials,2017,7(15):1700087.
9 Guan B Y,Yu L, Lou X W D. Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic sctivity toward oxygen reduction reaction in alkaline media[J].Advanced Science (Weinh),2017,4(10):1700247.
10 Gong D,Wang B,Zhu J, et al. An iodine quantum dots based rechargeable sodium-iodine battery[J].Advanced Energy Materials,2017,7(3):1601885.
11 Liu Y,Zeng Z,Bloom B, et al. Stable low-current electrodeposition of alpha-MnO2 on superaligned electrospun carbon nanofibers for high-performance energy storage[J].Small,2017,DOI:10.1002/smll.201703237.
12 Huang Q,Liu L,Wang D, et al. One-step electrospinning of carbon nanowebs on metallic textiles for high-capacitance supercapacitor fabrics[J].Journal of Materials Chemistry A,2016,4(18):6802.
13 Liu Y,Zhou J,Chen L, et al. Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors[J].ACS Applied Materials & Interfaces,2015,7(42):23515.
14 Bognitzki M,Czado W,Frese T, et al. Nanostructured fibers via electrospinning[J].Advanced Materials,2001,13(1):70.
15 Chen G,Xu Y,Yu D G, et al. Structure-tunable Janus fibers fabricated using spinnerets with varying port angles[J].Chemical Communications (Cambridge),2015,51(22):4623.
16 Du M, Rui K, Chang Y, et al. Carbon necklace incorporated electroa-ctive reservoir constructing flexible papers for advanced lithium-ion batteries[J].Small,2018,14(2):1702770.
17 Park S H,Kim B K, Lee W J. Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells[J].Journal of Power Sources,2013,239:122.
18 Chen Y M,Yu X Y,Li Z, et al. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode mate-rial for lithium-ion batteries[J].Science Advances,2016,2(7):1600021.
19 Chen H,Di J,Wang N, et al. Fabrication of hierarchically porous inorganic nanofibers by a general microemulsion electrospinning approach[J].Small,2011,7(13):1779.
20 Lee B S,Son S B,Park K M, et al. Effect of pores in hollow carbon nanofibers on their negative electrode properties for a lithium rechargeable battery[J].ACS Applied Materials & Interfaces,2012,4(12):6702.
21 He Z,Liu Q,Hou H, et al. Tailored electrospinning of WO3 nanobelts as efficient ultraviolet photodetectors with photo-dark current ratios up to 1000[J].ACS Applied Materials & Interfaces,2015,7(20):10878.
22 Zhu J,Shi W,Xiao N, et al. Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors[J].ACS Applied Materials & Interfaces,2012,4(5):2769.
23 Hu Y,Ye D,Luo B, et al. A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries[J].Advanced Materials,2018,30(2):1703824.
24 Liang K,Marcus K,Zhang S, et al. NiS2/FeS holey film as freestanding electrode for high-performance lithium battery[J].Advanced Energy Materials,2017,7(22):1701309.
25 Aricò A S,Bruce P,Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J].Nature Mate-rials,2005,4:366.
26 Débart A,Revel B,Dupont L, et al. Study of the reactivity mechanism of M3B2O6 (with M=Co, Ni, and Cu) toward lithium[J].Chemistry of Materials,2003,15(19):3683.
27 Badway F,Plitz I,Grugeon S, et al. Metal oxides as negative electrode materials in Li-ion cells[J].Electrochemical and Solid-State Letters,2002,5(6):A115.
28 Xu Y,Zhu Y,Han F, et al. 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries[J].Advanced Energy Materials,2015,5(1):1400753.
29 Zhang L,Hu X,Chen C, et al. In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage[J].Advanced Materials,2017,29(5):1604708.
30 Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J].Nano Today,2012,7(5):414.
31 Xia L,Wang S,Liu G, et al. Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life[J].Small,2016,12(7):853.
32 Liu Z,Guo R,Meng J, et al. Facile electrospinning formation of carbon-confined metal oxide cube-in-tube nanostructures for stable li-thium storage[J].Chemical Communications (Cambridge),2017,53(59):8284.
33 Luo W,Hu X,Sun Y, et al. Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries[J].Journal of Materials Chemistry,2012,22(18):8916.
34 Cho J S,Hong Y J, Kang Y C. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-ion batteries[J].ACS Nano,2015,9(4):4026.
35 Yan C,Chen G,Zhou X, et al. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries[J].Advanced Functional Materials,2016,26(9):1428.
36 Zheng S,Li X,Yan B, et al. Transition-Metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage[J].Advanced Energy Materials,2017,7(18):1602733.
37 Niu C,Meng J,Wang X, et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis[J].Nature Communications,2015,6:7402.
38 Xia G,Gao Q,Sun D, et al. Porous carbon nanofibers encapsulated with peapod-like hematite nanoparticles for high-rate and long-life battery anodes[J].Small,2017,13(44):1701561.
39 Zhu Y,Han X,Xu Y, et al. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode[J].ACS Nano,2013,7(7):6378.
40 Wu L,Hu X,Qian J, et al. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries[J].Energy & Environmental Science,2014,7(1):323.
41 Wang X,Liu Y,Wang Y, et al. CuO quantum dots embedded in carbon nanofibers as binder-free anode for sodium ion batteries with enhanced properties[J].Small,2016,12(35):4865.
42 Wang H G,Li W,Liu D P, et al. Flexible electrodes for sodium-ion batteries: Recent progress and perspectives[J].Advanced Materials,2017,29(45):1703012.
43 Li Z,Guan B Y,Zhang J, et al. A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries[J].Joule,2017,1(3):576.
44 Yu M,Wang Z,Wang Y, et al. Freestanding flexible Li2S paper electrode with high mass and capacity loading for high-energy Li-S batteries[J]. Advanced Energy Materials,2017,7(17):1700018.
45 Chen H,Xu H,Wang S, et al. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life[J].Science Advances,2017,3(12):7233.
46 Wang X,Xu X,Niu C, et al. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries[J].Nano Letters,2017,17(1):544.
47 Mao M,Cui C,Wu M, et al. Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery[J].Nano Energy,2018,45:346.
48 Miao X,Chen Z,Wang N, et al. Electrospun V2MoO8 as a cathode material for rechargeable batteries with Mg metal anode[J].Nano Energy,2017,34:26.
49 Chen L F,Lu Y,Yu L, et al. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors[J].Energy & Environmental Science,2017,10:1777.
50 Breitwieser M,Klose C,Klingele M, et al. Simple fabrication of 12 μm thin nanocomposite fuel cell membranes by direct electrospinning and printing[J].Journal of Power Sources,2017,337:137.
51 Shi J,Xia Y,Yuan Z, et al. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: A new and practical se-parator candidate for high safety lithium ion battery[J].Scientific Reports,2015,5:8255.
52 Liu K,Liu W,Qiu Y, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries[J].Science Advances,2017,3(1):e1601978.
53 Liao Y,Loh C H,Tian M, et al. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications[J].Progress in Polymer Science,2018,77:69.
54 Xinglei Z,Yuyao L,Ting H, et al. Cleanable air filter transferring moisture and effectively capturing PM2.5[J].Small,2017,13(11):1603306.
55 Ji D,Peng S,Lu J, et al. Design and synthesis of porous channel-rich carbon nanofibers for self-standing oxygen reduction reaction and hydrogen evolution reaction bifunctional catalysts in alkaline medium[J].Journal of Materials Chemistry A,2017,5(16):7507.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[5] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[6] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[7] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[8] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[9] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[10] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[11] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[12] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[13] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[14] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[15] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed