Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 21030322-10    https://doi.org/10.11896/cldb.21030322
  高分子与聚合物基复合材料 |
生物聚合物气凝胶的制备与应用研究进展
肖维新1,2, 袁静1, 严开祺1,*, 张敬杰1,*
1 中国科学院理化技术研究所,航天低温推进剂技术国家重点实验室,北京 100190
2 中国科学院大学化学科学学院,北京 100049
Progress in the Preparation and Application of Biopolymer Aerogels
XIAO Weixin1,2, YUAN Jing1, YAN Kaiqi1,*, ZHANG Jingjie1,*
1 State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2 School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 6684KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于可持续发展的需求,生物聚合物因成本低廉、绿色可再生、易于功能化等优点而受到极大关注。由生物聚合物构筑的气凝胶还具有气凝胶材料的低密度、低热导率、高孔隙率、高比表面积等优点,近10年来得到了迅速的发展,成为国际前沿热点研究方向。
生物聚合物需要先形成均匀的料液体系才能进一步凝胶、干燥得到气凝胶,而构筑的气凝胶材料也需要提高其结构稳定性和多功能化才能实现进一步的应用。因此,前期的研究主要集中于制备过程的优化和应用领域的拓展两方面。
除了少数可以通过调节pH或温度来进行溶解/分散外,大多数生物聚合物需要采用极性溶剂或离子液体来破坏氢键网络实现溶解/分散;随后的凝胶化可以通过氢键交联、化学共价键交联、离子交联和低温诱导等实现;湿凝胶的干燥则有超临界干燥、冷冻干燥和常压干燥;进一步,可以通过疏水改性、化学改性、复合化、衍生碳化等方法实现生物聚合物气凝胶多功能化,进而拓展其应用领域。目前,生物聚合物气凝胶材料在生物医药材料、重金属离子吸附、油水分离、隔热保温、电磁微波吸收等领域都发挥了重要的作用。
本文从生物聚合物气凝胶的制备体系入手,综述了生物聚合物的溶解体系、凝胶化过程、干燥方法和功能化改性等,同时对生物聚合物气凝胶的应用和发展历程进行了介绍,进一步对其未来应用前景进行了展望,为开发生物聚合物气凝胶的研究者们提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖维新
袁静
严开祺
张敬杰
关键词:  生物聚合物  气凝胶  生物医药材料  重金属离子吸附剂  油水分离  隔热  微波吸收    
Abstract: On the basis of sustainable development, biopolymers have attracted great attention because of their low cost, regeneration potential and easy functionalization, etc. Aerogels constructed of biopolymers combine the advantages of low density, high porosity, low thermal conductivity and high specific surface area, which have become a hot research topic and made tremendous progress in the past decade.
Generally, a uniform liquid system (solutions/slurries) of biopolymer is required, prior to the gelation and drying to obtain aerogels. The structural stability and the multifunctionality of assembled biopolymer aerogels need to be enhanced before their advanced applications. Therefore, previous studies mainly focus on the optimization of the preparation of biopolymer aerogels and expanding their applications.
A few biopolymers can be dissolved/dispersed by adjusting pH or temperature. Typically, polar solvents or ionic liquids are adopted to break the hydrogen bonding networks of biopolymers to form uniform liquid systems. Several gelation methods, such as hydrogen bond crosslinking, covalent crosslinking, ionic crosslinking and/or low temperature induced gelation, are applied to construct the liquid system into wet gels. The aerogels are obtained through drying the as-prepared wet gels using supercritical drying, freezing drying or ambient pressure drying. The biopolymer aerogels are further multifunctionalized by hydrophobic modification, chemical modification, compositing or derivative carbonization, in order to expand the areas of their application. Biopolymer aerogels have been widely used in biomedicine materials, heavy metal ion adsorption, oil-water separation, thermal insulation, electromagnetic microwave absorption and other fields.
In this paper, we review the preparation methods of biopolymer aerogels, and outline their dissolution system, gelation process, drying me-thods and functional modifications. Meanwhile, we summarize the applications and developments of biopolymer aerogels, and provide perspectives on their potential applications for future scientific research on biopolymer aerogels.
Key words:  biopolymer    aerogel    biomedical material    metal ion absorbent    oil-water separation    thermal insulation    microwave absorption
发布日期:  2022-10-26
ZTFLH:  O636  
  TB34  
基金资助: 中国科学院青年创新促进会项目(2019029);中国科学院战略性先导科技专项(A类)(XDA22010201);国家重点研发计划(2016YFC0304501;2019YFC0311401);航天低温推进剂技术国家重点实验室开放研究课题(SKLTSCP1904)
通讯作者:  *yankaiqi@mail.ipc.ac.cn; jjzhang@mail.ipc.ac.cn   
作者简介:  肖维新,2018年7月毕业于清华大学化学工程系,获得工学学士学位。现为中国科学院理化技术研究所硕士研究生,在张敬杰研究员、严开祺副研究员的指导下开展研究。目前主要研究领域为应用于隔热保温和电磁微波吸收领域的生物聚合物气凝胶。
严开祺,中国科学院理化技术研究所副研究员、项目研究员。2009年7月于南开大学获理学学士学位,2012年7月于中国科学院理化技术研究所获理学硕士学位,2017年7月于中国科学院理化技术研究所获理学博士学位。2018年晋升为中国科学院理化技术研究所副研究员。主要从事轻质微纳米功能材料的研究工作,包括无机中空微球粉体、轻量化复合材料、海洋工程复合材料、轻质隔热材料等。现已发表论文19篇,申请专利22项,参与制定行业标准1份。
张敬杰,中国科学院理化技术研究所研究员、博士研究生导师,中国科学院理化技术研究所油气开发及节能环保新材料研发中心主任,国家发改委节能中心专家库成员,享受政府津贴。2001年于中国科大研究生院获理学硕士。主要研究方向为微纳米球形粉体材料及其复合材料的理论研究和应用开发。现已发表SCI论文60余篇,申请专利40余项。
引用本文:    
肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
XIAO Weixin, YUAN Jing, YAN Kaiqi, ZHANG Jingjie. Progress in the Preparation and Application of Biopolymer Aerogels. Materials Reports, 2022, 36(20): 21030322-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030322  或          http://www.mater-rep.com/CN/Y2022/V36/I20/21030322
1 Linhares T, de Amorim M T P, Duraes L. Journal of Materials Chemitry A, 2019, 7(40), 22768.
2 Kistler S S.Nature, 1931, 127(3211), 741.
3 Kistler S S. The Journal of Physical Chemistry, 1932, 36(1), 52.
4 Zhao S, Malfait W J, Guerrero-Alburquerque N, et al. Angewandte Chemie International Edition, 2018, 57(26), 7580.
5 Bodvik R, Dedinaite A, Karlson L, et al. Colloids and Surfaces A: Phy-sicochemical and Engineering Aspects, 2010, 354(1), 162.
6 Johnson D L.U S patent, US3447939DA, 1969.
7 Wang W, Li Y, Li W, et al. Cellulose, 2019, 26(5), 3095.
8 Cai J, Zhang L.Macromolecular Bioscience, 2005, 5(6), 539.
9 Swatloski R P, Spear S K, Holbrey J D, et al. Journal of the American Chemical Society, 2002, 124(18), 4974.
10 Rieland J M, Love B J.Resources, Conservation and Recycling, 2020, 155, 104678.
11 Asim A M, Uroos M, Muhammad N.RSC Advances, 2020, 10(72), 44003.
12 Zhuang L H, Zhong F, Qin M Y, et al. Journal of Molecular Liquids, 2020, 317,113918.
13 Ejaz U, Muhammad S, Ali F I.International Journal of Biological Macromolecules, 2020, 165, 11.
14 Kuzmina O, Bhardwaj J, Vincent S R, et al. Green Chemistry, 2017, 19(24), 5949.
15 Okay O.Polymeric cryogels, Springer International Publishing, Switzerland, 2014.
16 Chu G, Qu D, Zussman E, et al. Chemistry of Materials, 2017, 29(9), 3980.
17 Toivonen M S, Kaskela A, Rojas O J, et al. Advanced Functional Mate-rials, 2015, 25(42), 6618.
18 Yamasaki S, Sakuma W, Yasui H, et al. Frontiers in Chemistry, 2019, 7, 316.
19 Sakuma W, Yamasaki S, Fujisawa S, et al. ACS Nano,2021,15(1),1436.
20 Guerrero-Alburquerque N, Zhao S, Adilien N, et al. ACS Applied Materials & Interfaces, 2020, 12(19), 22037.
21 Takeshita S, Konishi A, Takebayashi Y, et al. Biomacromolecules, 2017, 18(7), 2172.
22 Ding X, Dai R, Chen H, et al. Carbohydrate Polymers, 2021, 255, 117340.
23 Yi L, Yang J, Fang X, et al. Journal of Hazardous Materials, 2020, 385, 121507.
24 Huang W, Zhang L, Lai X, et al. Chemical Engineering Journal, 2020, 386, 123994.
25 Li Z, Shao L, Hu W, et al. Carbohydrate Polymers, 2018, 191, 183.
26 Yan Y, Ge F, Qin Y, et al. Carbohydrate Polymers, 2020, 248, 116755.
27 Wei J Y, Geng S Y, Hedlund J, et al. Cellulose, 2020, 27(5), 2695.
28 Radwan-Pragłowska J, Piątkowski M, Deineka V, et al. Molecules, 2019, 24(14), 2629.
29 Baldino L, Cardea S, Reverchon E.Polymer Engineering and Science, 2018, 58(9), 1494.
30 Chen Y F, Li Q, Li Y J, et al. Polymers, 2020, 12(2), 333.
31 Wei H, Rodriguez K, Renneckar S, et al. Environmental Science: Nano, 2014, 1(4), 302.
32 Chen J, Xie H, Lai X, et al. Chemical Engineering Journal, 2020, 399, 125729.
33 Bai W, Yang X, Du X, et al. Applied Surface Science, 2020, 504, 144179.
34 Zha L, Wang L, Zheng Y, et al. Journal of Functional Polymers, 2020, 33(4), 382.
35 Jiang F, Liu H, Li Y, et al. ACS Applied Materials & Interfaces, 2018, 10(1), 1104.
36 Zhao H, Cheng Y, Liu W, et al. Nano-Micro Letters,2019,11(1),24.
37 Chang C, Wang H, Zhang Y, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(12), 10763.
38 Teng H, Wang S C.Carbon, 2000, 38(6), 817.
39 Zhang F, Liu T, Zhang J, et al. Carbon, 2019, 147, 451.
40 Jiang Q, Pang X, Geng S, et al. Applied Surface Science, 2019, 479, 128.
41 Sun J, Huang J, Lei E, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(30), 11114.
42 Tian X X, Zhu H S, Meng X, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(34), 12755.
43 Wang M, Chen Y L, Qin Y L, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(15), 12726.
44 Wu Z, Tian K, Huang T, et al. ACS Applied Materials & Interfaces, 2018, 10(13), 11108.
45 Li L X, Hu T, Li A, et al. ACS Applied Materials & Interfaces, 2020, 12(28), 32143.
46 Cui Y, Zhu T, Li A, et al. ACS Applied Materials & Interfaces, 2018, 10(8), 6956.
47 Liu Y, Fan Q, Huo Y, et al. ACS Applied Materials & Interfaces, 2020, 12(51), 57410.
48 Wang H, Zhou S, Guo L, et al. ACS Applied Materials & Interfaces, 2020, 12(35), 39685.
49 Wu Z, Zhou W, Deng W, et al. ACS Applied Materials & Interfaces, 2020, 12(18), 20307.
50 Hasanpour M, Hatami M.Advances in Colloid and Interface Science, 2020, 284, 102247.
51 Herman P, Fábián I, Kalmár J, et al. ACS Applied Nano Materials, 2020, 3(1), 195.
52 Geng B, Wang H, Wu S, et al. ACS Sustainable Chemistry & Enginee-ring 2017, 5(12), 11715.
53 Yu R, Shi Y, Yang D, et al. ACS Applied Materials & Interfaces, 2017, 9(26), 21809.
54 Li J, Zuo K, Wu W, et al. Carbohydrate Polymers, 2018, 196, 376.
55 Lei C, Gao J, Ren W, et al. Carbohydrate Polymers, 2019, 205, 35.
56 Teng J, Zeng X, Xu X, et al. Materials Letters, 2018, 214, 31.
57 Wang X L, Guo D M, An Q D, et al. International Journal of Biological Macromolecules, 2019, 128, 268.
58 Guan H, Cheng Z, Wang X.ACS Nano, 2018, 12(10), 10365.
59 Jiang F, Hsieh Y L.ACS Omega, 2018, 3(3), 3530.
60 Sai H, Fu R, Xing L, et al. ACS Applied Materials & Interfaces, 2015, 7(13), 7373.
61 Chen T, Li M X, Zhou L, et al. ACS Sustainable Chemistry & Enginee-ring, 2020, 8(16), 6458.
62 Yin A, Xu F, Zhang X.Materials, 2016, 9(9), 758.
63 Han S, Sun Q, Zheng H, et al. Carbohydrate Polymers, 2016, 136, 95.
64 Baetens R, Jelle B P, Gustavsen A.Energy and Buildings,2011,43(4), 761.
65 Zou F X, Yue P, Zheng X H, et al. Journal of Materials Chemistry A, 2016, 4(28), 10801.
66 Wicklein B, Kocjan A, Salazar-Alvarez G, et al. Nature Nanotechnology, 2015, 10(3), 277.
67 Takeshita S, Yoda S.Chemistry of Materials, 2015, 27(22), 7569.
68 Druel L, Bardl R, Vorwerg W, et al. Biomacromolecules,2017,18(12), 4232.
69 Zhu J, Zhao F, Xiong R, et al. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106040.
70 Zhu J, Hu J, Jiang C, et al. Carbohydrate Polymers, 2019, 207, 246.
71 Song M, Jiang J, Qin H, et al. ACS Applied Materials & Interfaces, 2020, 12(40), 45363.
72 Yuan B, Zhang J, Mi Q, et al. ACS Sustainable Chemistry & Enginee-ring, 2017, 5(11), 11117.
73 Ye D D, Wang T, Liao W, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(13), 11582.
74 Zhu J, Xiong R, Zhao F, et al. ACS Sustainable Chemistry & Enginee-ring, 2020, 8(1), 71.
75 Xi J, Zhou E, Liu Y, et al. Carbon, 2017, 124, 492.
76 Zhou X F, Jia Z R, Feng A L, et al. Composites Communication, 2020, 21, 100404.
77 Sun X X, Yang M L, Yang S, et al. Small, 2019, 15(43), 1902974.
78 Hu P, Dong S, Li X, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(27), 10230.
79 Zhang Z, Tan J, Gu W, et al. Chemical Engineering Journal, 2020, 395, 125190.
80 Chen Y, Potschke P, Pionteck J, et al. ACS Applied Materials & Interfaces, 2020, 12(19), 22088.
81 Cheng J B, Zhao H B, Cao M, et al. ACS Applied Materials & Interfaces, 2020, 12(23), 26301.
82 Yang M, Yuan Y, Li Y, et al. ACS Applied Materials & Interfaces, 2020, 12(29), 33128.
[1] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[2] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[3] 范雷倚, 王锐, 何睿杰, 张瑞阳, 张骞, 周莹. 聚合氯化铝原位改性聚氨酯泡沫用于油水分离[J]. 材料导报, 2022, 36(9): 21040138-7.
[4] 江幸, 孔勇, 赵志扬, 沈晓冬. 球形气凝胶材料的研究进展[J]. 材料导报, 2022, 36(8): 20040032-8.
[5] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[6] 王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
[7] 贾海林, 项海军, 郭明生, 赵万里, 赵晓举, 张民远, 于水军. 深热井巷热害隔离材料复配体系及性能研究[J]. 材料导报, 2022, 36(20): 21050031-10.
[8] 董桂伟, 赵国群, 丁汪洋, 王桂龙, 张磊. 基于多阶压力控制的双峰泡孔聚合物发泡行为及性能[J]. 材料导报, 2022, 36(2): 20050168-5.
[9] 范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 20120056-8.
[10] 刘颖, 黄艳辉, 刘贤淼. 气凝胶型轻木基复合材料的研究进展[J]. 材料导报, 2022, 36(15): 21010182-9.
[11] 张堃, 袁新强, 王丹, 梅晶, 蒋鹏, 张伟. VO2(M)粉体合成与表征[J]. 材料导报, 2022, 36(13): 21010087-5.
[12] 严蛟, 邝旻翾, 胡宏林, 孔磊, 马慧玲, 张秀芹. 间苯二酚-甲醛基酚醛/碳气凝胶微观结构调控研究进展[J]. 材料导报, 2022, 36(12): 20090342-10.
[13] 张浩源, 刘敬肖, 史非, 刘素花, 宋昕. Ptn-CsxWO3/PNIPAM热致调光材料的制备及其隔热性能研究[J]. 材料导报, 2022, 36(1): 20100129-5.
[14] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[15] 成晨, 赵燕. 柴油乳化水分离材料的研究进展[J]. 材料导报, 2021, 35(Z1): 536-540.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed