Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20080197-10    https://doi.org/10.11896/cldb.20080197
  高分子与聚合物基复合材料 |
多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展
王杨鑫*, 邓强, 李成贵, 温永宇
南京工业大学材料科学与工程学院,南京 211816
Research Progress on Preparation and Application of Polysaccharides-Metal Organic Frameworks Hybrid Aerogels
WANG Yangxin*, DENG Qiang, LI Chenggui, WEN Yongyu
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
下载:  全 文 ( PDF ) ( 6791KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 气凝胶材料是一类具有三维纳米结构的多孔材料,在航空航天、石油化工、环保工程、建筑工程、化学催化、医药卫生等领域表现出广泛的应用价值,自问世以来一直深受人们的关注。由纤维素、壳聚糖、海藻酸等多糖制备得到的气凝胶材料不仅能够保持传统气凝胶高孔隙率、大比表面积、低密度的特点,还具备了天然高分子可再生、可降解、生物兼容性好的优点,成为了当前的热门材料之一。金属有机框架(MOFs)是一类由金属节点以及有机配体通过配位作用组装形成的多孔框架材料,在吸附、催化、传感、载药等领域都表现出巨大的应用潜力。随着对材料应用功能、加工性能、循环使用性能等要求的提升,近年来人们对多糖/MOFs复合气凝胶材料的研究兴趣逐渐高涨。自2016年第一例纤维素纳米晶/MOFs复合气凝胶材料被报道以来,研究人员尝试了多种不同的多糖以及MOFs组合,制备了不同类型的多糖/MOFs复合气凝胶材料,并探索了它们在不同领域的应用。
本文首先总结了多糖/MOFs复合气凝胶材料的三种常见制备策略:(1)将预先制备好的MOFs与多糖直接混合制备复合气凝胶;(2)在多糖分子表面原位生成MOFs之后再制备复合气凝胶;(3)在已制备好的多糖气凝胶中原位生成MOFs再制备复合气凝胶。通过相应的实例详细介绍了这些制备方法的特点,然后分别介绍了多糖/MOFs复合气凝胶材料在不同领域中的应用情况,最后针对当前该领域研究存在的不足以及面临的问题提出了解决方法并展望了未来可能的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王杨鑫
邓强
李成贵
温永宇
关键词:  多糖  金属有机框架(MOFs)  气凝胶  多孔材料  复合材料    
Abstract: Aerogel, a type of three-dimensional nano-structured porous material, has attracted extensive attention since it was developed, which has comprehensive applications in fields of aeronautics and astronautics, petrochemical engineering, environmental protection, architectural engineering, chemical catalysis, and medical and health. Aerogels made from polysaccharides, including cellulose, chitosan, alginate, etc., have been recognized as a type of emerging materials, because they not only show high porosity, high specific surface area, and extremely low density similar to the conventional aerogels, but also feature with renewability, biodegradability and excellent biocompatibility. Metal organic frameworks (MOFs), which are constructed through coordination between metal ions and organic linkers, have shown great application potential in fields of adsorption, catalysis, sensing, drug delivery and so on. Along with the increasing requirement for capability, processability and reusability of materials, growing attention has been paid to polysaccharide/MOFs hybrid aerogels. Since the first report about cellulose-nanocrystals/MOFs hybrid aerogel was published in 2016, different polysaccharides and MOFs have been composited for constructing polysaccharide/MOFs aerogels, and their applications in variou fields have been explored.
In this review, three commonly used strategies for preparing polysaccharide-MOFs hybrid aerogels are summarized: (1) direct mixing of pre-prepared MOFs with polysaccharides to make hybrid aerogels; (2) MOFs formed on the surface of polysaccharides before self-assembly and drying to form hybrid aerogels; (3) MOFs formed on the surface of pre-formed polysaccharide aerogels to make hybrid aerogels. The characteristics of these different strategies are introduced and compared in combination with corresponding recent examples. Afterwards, the applications of these hybrid aerogels in different fields are also reviewed. In the end, the possible challenges and the outlook regarding polysaccharide/MOFs hybrid aerogels are illustrated.
Key words:  polysaccharide    metal organic frameworks (MOFs)    aerogel    porous material    composite material
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  O636  
基金资助: 南京工业大学引进人才科研启动专项经费(39803155)
通讯作者:  yangxin.wang@njtech.edu.cn   
作者简介:  王杨鑫,南京工业大学材料科学与工程学院副教授。2011年6月毕业于南京大学化学化工学院,获理学学士学位;2016年7月在中国科学院福建物质结构研究所获博士学位;2016年9月至2019年12月于西北工业大学生命学院从事博士后研究工作,期间以访问学者身份分别于德国德累斯顿工业大学(2016年10月至2018年6月)以及卡尔斯鲁厄理工学院(2018年11月至2019年11月)进行科研工作;2020年4月入职南京工业大学材料科学与工程学院。主要研究方向为多孔有机框架材料、生物大分子基复合材料、智能响应性高分子材料,迄今发表SCI论文20余篇。
引用本文:    
王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
WANG Yangxin, DENG Qiang, LI Chenggui, WEN Yongyu. Research Progress on Preparation and Application of Polysaccharides-Metal Organic Frameworks Hybrid Aerogels. Materials Reports, 2022, 36(4): 20080197-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080197  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20080197
1 Yang J, Li Y, Zheng Y, et al. Small, 2019, 15, 1902826.
2 Cuce E, Cuce P M, Wood C J, et al. Renewable and Sustainable Energy Reviews, 2014, 34, 273.
3 Wu X, Song Z, Wang W, et al. Journal of Nanjing Tech University (Natural Science Edition), 2020, 42(4), 405(in Chinese).
吴晓栋, 宋梓豪, 王伟,等。南京工业大学学报(自然科学版), 2020, 42(4), 405.
4 Luo X, Shen J, Ma Y, et al. Carbohydrate Polymers, 2020, 230, 115623.
5 Fu B, Yang Q, Yang F. ACS Omega, 2020, 5, 8181.
6 Fu Q, Si Y, Duan C, et al. Advanced Functional Materials, 2019, 29, 44874.
7 Jiao L, Seow J Y R, Skinner W S, et al. Materials Today, 2019, 27, 43.
8 Li J, Ren Y, Jiang H. Progress in Chemistry, 2019, 31(10), 1350(in Chinese).
李嘉伟, 任颜卫,江焕峰.化学进展, 2019, 31(10), 1350.
9 Shao C, Yang H, Du Y, et al. Chemical Research, 2019, 30(5), 537(in Chinese).
邵彩云, 杨华勇, 杜毅, 等.化学研究, 2019, 30(10), 537.
10 Miao P, Chen J, Tang Y, et al. Science China Materials, 2020, 63(10), 2050.
11 Qi Y, Ren S, Che Y, et al. Acta Chimica Sinica, 2020, DOI: 10.6023/A20040126(in Chinese).
齐野, 任双颂, 车颖, 等.化学学报,2020,DOI:10.6023/A20040126.
12 Zhao J, Yuan H, Xie B, et al. New Chemical Materials, 2020, 48(2), 50(in Chinese).
赵建波, 袁海丰, 谢冰,等.化工新型材料, 2020, 48(2), 50.
13 Zhu H, Yang X, Cranston E D, et al. Advanced Materials, 2016, 28, 7652.
14 Zhao S, Malfait W J, Guerrero-Alburquerque N, et al. Angewandte Chemie International Edition, 2018, 57, 7580.
15 Yang W J, Yuen A C Y, Li A, et al. Cellulose, 2019, 26, 6449.
16 Peng C, Suo H, Cui S, et al. Morden Chemical Industry, 2019, 39(7), 56(in Chinese).
彭长鑫, 锁浩, 崔升, 等.现代化工, 2019, 39(7), 56.
17 Nadar S S, Vaidya L, Maurya S, et al. Coordination Chemistry Reviews, 2019, 396, 1.
18 Cheng P, Wang C, Kaneti Y V, et al. Langmuir, 2020, 36, 4231.
19 Wang L, Xu H, Gao J, et al. Coordination Chemistry Reviews, 2019, 398, 213016.
20 Cheng P, Kim M, Lim H, et al. Advanced Sustainable Systems, 2020, 4, 2000060.
21 Yuan Y, Yang D, Mei G, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 544, 187.
22 Wang Z, Song L, Wang Y, et al. Chemical Engineering Journal, 2019, 371, 138.
23 Liu Q, Li S, Yu H, et al. Journal of Colloid and Interface Science, 2020, 561, 211.
24 Saito T, Kimura S, Nishiyama Y, et al. Biomacromolecules, 2007, 8, 2485.
25 Zhu L, Zong L, Wu X, et al. ACS Nano, 2018, 12, 4462.
26 Ma S, Zhang M, Nie J, et al. Carbohydr Polym, 2019, 208, 328.
27 Cui J, Xu X, Yang L, et al. Chemical Engineering Journal, 2020, 395, 125174.
28 Bo S G, Ren W J, Lei C, et al. Journal of Solid State Chemistry, 2018, 262, 135.
29 Ren W, Gao J, Lei C, et al. Chemical Engineering Journal, 2018, 349, 766.
30 Lei C, Gao J, Ren W, et al. Carbohydr Polym, 2019, 205, 35.
31 Liu Q, Yu H, Zeng F, et al. Journal of Colloid and Interface Science, 2020, 579, 119.
32 Shen C, Mao Z, Xu H, et al. Carbohydrate Polymers, 2019, 213, 184.
33 Liu M, Zou D, Ma T, et al. Journal of Materials Chemistry A, 2020, 8, 6670.
34 Ma X, Lou Y, Chen X B, et al. Chemical Engineering Journal, 2019, 356, 227.
35 Yang W, Cheng M, Han Y, et al. Journal of Hazardous Materials, 2020, 401, 123318.
36 Song W, Zhu M, Zhu Y, et al. Cellulose, 2020, 27, 2161.
37 Zhang W T, Shi S, Zhu W X, et al. ACS Sustainable Chemistry & Engineering, 2017, 5, 9347.
38 Yang W, Han Y, Li C, et al. Chemical Engineering Journal, 2019, 375, 122076.
39 Nabipour H, Nie S, Wang X, et al. Cellulose, 2020, 27, 2237.
40 Tan C, Lee M C, Arshadi M, et al. Angewandte Chemie International Edition, 2020, 59, 9506.
41 Valencia L, Abdehamid H N. Carbohydrate Polymers, 2019, 213, 338.
42 Zhou S, Apostolopoulou-Kalkavoura V, da Costa M V T, et al. Nano-Micro Letters, 2020, 12, 9.
43 Wu Y, Ren W, Li Y, et al. Journal of Solid State Chemistry, 2020, 291, 121621.
44 Huang G, Chen J, Tang X, et al. ACS Applied Materials & Interfaces, 2019, 11, 10389.
45 Wu C, Dan Y, Tian D, et al. International Journal of Biological Macromolecules, 2020, 145, 1073.
46 Fei Y, Liang M, Yan L, et al. Chemical Engineering Journal, 2020, 392, 124815.
[1] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[2] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[3] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[4] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[5] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[6] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[7] 熊小双, 张梓豪, 李巧敏, 余联庆. 考虑界面性能的短切亚麻纤维增强复合材料弹性常数预测[J]. 材料导报, 2022, 36(1): 21010018-8.
[8] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[9] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[10] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[11] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[12] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[13] 高玉龙, 王松, 张联合, 台永丰. 轨道车辆复合材料层压板结构的超声检测方法研究[J]. 材料导报, 2021, 35(z2): 433-436.
[14] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[15] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed