Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21010182-9    https://doi.org/10.11896/cldb.21010182
  高分子与聚合物基复合材料 |
气凝胶型轻木基复合材料的研究进展
刘颖1, 黄艳辉1,*, 刘贤淼2,*
1 北京林业大学材料科学与技术学院,北京 100083
2 国家林业和草原局国际竹藤中心,北京 100102
Research Progress of Aerogel-type Balsa Wood-based Composites
LIU Ying1, HUANG Yanhui1,*, LIU Xianmiao2,*
1 College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
2 International Bamboo and Rattan Center, National Forestry and Grassland Administration, Beijing 100102, China
下载:  全 文 ( PDF ) ( 12129KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 轻木(Ochroma pyramidale)是一种天然生物质材料,具有成本低廉、含量丰富、可再生、可生物降解等优势,还具有密度低、质量轻、孔隙度高、生长速度快等特点。除此之外,它还具备多孔、层次化的物理结构,且尺寸稳定性好、容易加工。近年来,利用这些优点,采用简单有效的自上而下的处理方法,如细胞壁膨化、干燥等步骤,可以得到一种比表面积大、孔隙率高、力学性能优异且具备可调多级孔结构的海绵状材料。这种结构与传统气凝胶多孔道结构以及海绵的结构非常相似,因此将其称为气凝胶型轻木,也称为木海绵(WS),它不仅能克服传统气凝胶力学性能差、制备过程复杂、能源消耗高、环境友好性差等缺陷,而且通过一系列功能化处理,可被赋予多种新的功能,进而用于制备可生物降解的气凝胶型复合材料,并且有助于缓解能源危机和环境污染问题,这使得轻木成为现阶段生物基气凝胶型复合材料研究者的新宠。本文从天然轻木的微观构造及化学成分出发,介绍了生物基气凝胶型轻木基复合材料的特点,归纳了其制备方法,详述了其现阶段在油水分离、透明材料、储能材料等领域的研究进展,最后针对气凝胶型轻木基复合材料在制备和应用等方面存在的问题提出了建议,以期为气凝胶型轻木的高附加值利用提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘颖
黄艳辉
刘贤淼
关键词:  天然轻木  木海绵  气凝胶型复合材料  自上而下  功能化改性    
Abstract: Balsa wood(Ochroma pyramidale), as a kind of natural biomass raw material, is low cost, naturally abundant, renewable and biodegradable, and it also has lots of advantages, including low density, light quality, high porosity and thin cell walls. In addition, it also has a porous hierarchical physical structure, good dimensional stability and easy processing. In recent years, researchers have found that a sponge-like material with large specific surface area, high porosity, excellent mechanical properties and adjustable multistage pore structure could be obtained using these advantages, through a simple and effective top-down processing method, such as cell swelling and drying. This structure is very similar to the traditional aerogel and sponges, so it is called aerogel-type balsa wood, also known as wood sponge (WS). Moreover, through a series of subsequent functionalization, it could be endowed with a variety of new functions, and then be used to prepare biodegradable aerogel-type composite materials. At the same time, this material could overcome some defects of traditional aerogels, such as poor mechanical properties, complicated production process, high energy consumption and non-environmental regeneration, making them ideally suited for the research of various functional materials. In this review, we highlight the micro/nanostructures of balsa wood and aerogel-type balsa, briefly introduce the characteristics of bio-based aerogel-type balsa wood-based composite materials, and summarize the preparation methods. The latest advances in oil/water separation, transparent materials, energy storage materials and other fields are also described. Furthermore, the scientific and technical challenges and future research opportunities are finally discussed, providing a theoretical reference for the high value-added utilization of aerogel-type balsa wood.
Key words:  natural balsa wood    wood sponge    aerogel-type composite material    top-down    functionalization modification
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TB34  
基金资助: 林业公益性行业科研专项经费(201504610)
通讯作者:  *huangyanhuizhou@163.com;liuxm206@163.com   
作者简介:  刘颖,2019年6月毕业于北京林业大学,获得工学学士学位。现为北京林业大学材料科学与技术学院硕士研究生,在黄艳辉导师和刘贤淼研究员的指导下进行研究。目前主要从事气凝胶型轻木功能复合材料的制备与研究。
刘贤淼,研究员,从事竹/木基复合材料及其标准化研究。2001年获北京林业大学学士学位,2005年获中国林业科学研究院硕士学位,2008年毕业于中国林业科学研究院获博士学位。先后主持或参加“十三”国家科技支撑专题、国家林业公益性行业科研专项、国家林业局“948”项目多项。以第一作者在核心期刊发表论文30余篇。主持制定发布《竹牙签》国家标准、我国首项ISO竹子标准《竹和竹产品术语》;获林草系统首项ISO卓越贡献奖。
引用本文:    
刘颖, 黄艳辉, 刘贤淼. 气凝胶型轻木基复合材料的研究进展[J]. 材料导报, 2022, 36(15): 21010182-9.
LIU Ying, HUANG Yanhui, LIU Xianmiao. Research Progress of Aerogel-type Balsa Wood-based Composites. Materials Reports, 2022, 36(15): 21010182-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010182  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21010182
1 Myung Y, Jung S, Tung T T, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(4), 3772.
2 Yao W, Mao R, Gao W, et al. Carbon, 2020, 158, 418.
3 Gu H, Zhou X, Lyu S, et al. Journal of Colloid and Interface Science, 2020, 560, 849.
4 Dou L, Zhang X, Cheng X, et al. ACS Applied Materials & Interfaces, 2019, 11(32), 29056.
5 Zhang X, Liu M, Wang H, et al. Carbohydrate Polymers, 2019, 208, 232.
6 Zhai X L, Li J, Liu Y X, et al. Journal of Northeast Forestry University, 2008, 36(11), 5(in Chinese).
翟相林,李坚,刘一星,等.东北林业大学学报, 2008, 36(11), 5.
7 Borrega M, Ahvenainen P, Serimaa R, et al. Wood Science and Technology, 2015, 49(2), 403.
8 Gao J R, Qiu J, Li J, et al. Journal of Northeast Forestry University, 2008, 36(11), 98(in Chinese).
高景然,邱坚,李坚,等. 东北林业大学学报, 2008, 36(11), 98.
9 Chen G, Li T, Chen C, et al. Advanced Functional Materials, 2019, 29(44), 1902772.
10 Mi R, Li T, Dalgo D, et al. Advanced Functional Materials, 2020, 30(1), 1907511.
11 Fletcher M I. Economic Botany, 1951, 5(2), 107.
12 Jia C, Li Y, Yang Z, et al. Joule, 2017, 1(3), 588.
13 da Silva A, Kyriakides S. International Journal of Solids and Structures, 2007, 44(25-26), 8685.
14 Cave I D. Wood Science and Technology, 1968, 2(4), 268.
15 Cameselle-Molares A, Vassilopoulos A P, Keller T. International Journal of Fatigue, 2019, 125, 72.
16 Zhang J, Shen Y, Jiang B, et al. Aerospace, 2018, 5(3), 75.
17 Mohammadi M S, Nairn J A. Composites Part B: Engineering, 2017, 122, 165.
18 Malek S, Raney J R, Lewis J A, et al. Bioinspiration & Biomimetics, 2017, 12(2), 26014.
19 He T X. Ultrastructure of wood cell wall, China Forestry Publishing House, China, 1987(in Chinese).
何天相. 木材细胞壁超微结构, 中国林业出版社, 1987.
20 Guan H, Cheng Z, Wang X. ACS Nano, 2018, 12(10), 10365.
21 Song J, Chen C, Yang Z, et al. ACS Nano, 2018, 12(1), 140.
22 Chen C, Song J, Zhu S, et al. Chem, 2018, 4(3), 544.
23 Song J, Chen C, Wang C, et al. ACS Applied Materials & Interfaces, 2017, 9(28), 23520.
24 Zhai X L. Preliminary research of preparation method of aerogel-type wood. Master's Thesis, Northeast Forestry University, China, 2009 (in Chinese).
翟相林. 气凝胶型木材制备方法的初步研究. 硕士学位论文, 东北林业大学, 2009.
25 Fengel D, Wegener G. Wood: chemistry, ultrastructure, reactions, Walter de Gruyter, Berlin and New York, 2011.
26 Li X, Tabil L G, Panigrahi S. Journal of Polymers and the Environment, 2007, 15(1), 25.
27 Rout J, Tripathy S S, Nayak S K, et al. Journal of Applied Polymer Science, 2001, 79(7), 1169.
28 Jia C, Chen C, Kuang Y, et al. Advanced Materials, 2018, 30(30), 1801347.
29 Paris O, Burgert I, Fratzl P. MRS Bulletin, 2010, 35(3), 219.
30 Jia C, Chen C, Kuang Y, et al. Advanced Materials, 2018, 30(30), 1801347.
31 Gao J R, Qiu J, Li J, et al. Journal of Northeast Forestry University, 2008, 36(12), 19(in Chinese).
高景然,邱坚,李坚,等.东北林业大学学报, 2008, 36(12), 19.
32 Le Moigne N, Navard P. Cellulose, 2010, 17(1), 31.
33 Roman M, Winter W T. Biomacromolecules, 2004, 5(5), 1671.
34 Wang M, Liu F, Chen Y, et al. Materials, 2018, 11(12), 2430.
35 Liu S, Zhang Y, Jiang H, et al. Cellulose Science and Technology, 2017, 25(1), 75(in Chinese).
刘双,张洋,江华,等. 纤维素科学与技术, 2017, 25(1), 75.
36 Liebner F, Haimer E, Wendland M, et al. Macromolecular Bioscience, 2010, 10(4), 349.
37 Li Y, Grishkewich N, Liu L, et al. Chemical Engineering Journal, 2019, 366, 531.
38 Liu H,Geng B, Chen Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2017, 5(1), 49.
39 Fu Y, Li G, Yu H, et al. Applied Surface Science, 2012, 258(7), 2529.
40 Zhang W, Liu N, Cao Y, et al. Advanced Materials Interfaces, 2017, 4(10), 1600029.
41 Si Y, Fu Q, Wang X, et al. ACS Nano, 2015, 9(4), 3791.
42 Yang X, Fei B, Ma J, et al. Carbohydrate Polymers, 2018, 180, 385.
43 Fu Q, Ansari F, Zhou Q, et al. ACS Nano, 2018, 12(3), 2222.
44 Wan C, Jiao Y, Wei S, et al. ACS Applied Materials & Interfaces, 2019, 11(51), 47846.
45 Zhu Z, Fu S, Lucia L A. ACS Sustainable Chemistry & Engineering, 2019, 7(19), 16428.
46 Yu Z, Yao Y, Yao J, et al. Journal of Materials Chemistry A, 2017, 5(13), 6019.
47 Zhu M, Song J, Li T, et al. Advanced Materials, 2016, 28(26), 5181.
48 Mi R, Li T, Dalgo D, et al. Advanced Functional Materials, 2020, 30(1), 1907511.
49 Li Y, Cheng M, Jungstedt E, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(6), 6061.
50 Chen M, Zhou W, Chen J, et al. Materials, 2019, 12(19), 3198.
51 Sun H, Bi H, Lin X, et al. Polymers, 2020, 12(1), 165.
52 Song S, Zhao T, Qiu F, et al. Energy, 2019, 172, 1144.
53 Yang H, Chao W, Di X, et al. Energy Conversion and Management, 2019, 200, 112029.
54 Wang M, Liu F, Chen Y, et al. Materials, 2018, 11(12), 2430.
55 Fu Q, Medina L, Li Y, et al. ACS Applied Materials & Interfaces, 2017, 9(41), 36154.
56 Tom L, Rebecca S, Marieluise L, et al. International Journal of Applied Ceramic Technology, 2020, 17(1), 3.
[1] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[2] 杨璐, 王泽方. 氮化硼量子点的制备及应用综述[J]. 材料导报, 2021, 35(1): 1058-1076.
[3] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[4] 包建民, 闫志英, 李优鑫. 微米级多孔聚苯乙烯-二乙烯苯微球的制备、改性及应用综述[J]. 材料导报, 2018, 32(17): 3060-3067.
[5] 杨守禄, 罗莎, 章磊, 姬宁, 李丹, 吴义强. 木塑复合材料功能化改性研究进展[J]. 材料导报, 2018, 32(17): 3090-3098.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed