Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 20090131-9    https://doi.org/10.11896/cldb.20090131
  高分子与聚合物基复合材料 |
静电纺聚丙烯腈基纳米纤维对重金属离子吸附性能的研究进展
师晓凤, 马应霞*, 李鑫, 康小雅, 李晓华, 杨海军
兰州理工大学材料科学与工程学院,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Research Progress on Adsorption Performance of Electrospun Polyacrylonitrile-based Nanofibers for Heavy-metal Ions
SHI Xiaofeng, MA Yingxia*, LI Xin, KANG Xiaoya, LI Xiaohua, YANG Haijun
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, School of Materials Science & Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 4751KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含重金属离子污染物的废水由于重金属离子在环境中难以生物降解,且具有毒性和生物富集性,对人类健康和生态环境构成了严重的威胁。因此,如何安全有效地去除废水中的重金属离子就显得尤为重要。
静电纺聚丙烯腈(PAN)纳米纤维富含腈基,可以通过功能化改性引入巯基、胺基、羧基和偕胺肟基等多种功能基团,这些功能基团可以用于选择性吸附废水中的重金属离子。然而,随着腈基转化率的增加,静电纺PAN纳米纤维的柔韧性会变差,导致力学性能下降,从而影响其吸附性能和实际应用。本文主要介绍了通过直接功能化改性、交联接枝改性、聚合物共混改性和有机/无机复合改性制备静电纺PAN基纳米纤维的方法,并对不同方法制备的PAN基纳米纤维吸附重金属离子的性能进行了归纳总结和对比分析,同时对静电纺PAN基纳米纤维未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
师晓凤
马应霞
李鑫
康小雅
李晓华
杨海军
关键词:  聚丙烯腈  静电纺纳米纤维  制备方法  重金属离子  吸附    
Abstract: Wastewater containing heavy-metal ions poses a serious threat to human health and ecological environment, because heavy-metal ions that have toxicity and bio-accumulative properties are difficult to biodegrade in the environment. Therefore, how to safely and effectively remove heavy-metal ions in wastewater is particularly important.
Electrospun polyacrylonitrile (PAN) nanofibers are rich in nitrile groups. Various functional groups, such as sulfhydryl, amino, carboxyl and amidoxime groups, can be introduced into these nanofibers through functional modification to selectively adsorb heavy-metal ions in wastewater. However, as the conversion rate of nitrile groups increases, the flexibility of electrospun PAN nanofibers will worsen, resulting in decrease in mechanical properties, which will affect adsorption properties and practical applications of such nanofibers. Methods of preparing electrospun PAN-based nanofibers through direct functional modification, cross-linking branch modification, polymer blending modification, and organic/inorganic composite modification, are introduced in this paper. The performance of the resulting fibers on adsorbing heavy-metal ions is summarized and compared, and the outlook of future research directions for electrospun PAN-based nanofibers is also provided.
Key words:  polyacrylonitrile    electrospun nanofiber    preparation method    heavy metal ion    adsorption
收稿日期:  2202-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TQ340.9  
基金资助: 沈阳材料科学国家研究中心-有色金属加工与再利用国家重点实验室联合基金(18LHPY005)
通讯作者:  *mayx2011818@163.com   
作者简介:  师晓凤,2018年6月毕业于兰州理工大学,获得工学学士学位。现为兰州理工大学材料科学与工程学院硕士研究生,在马应霞教授的指导下进行研究。目前主要从事静电纺聚丙烯腈基纳米纤维对重金属离子的吸附性能研究。马应霞,兰州理工大学教授。2012年6月毕业于兰州大学,获得博士学位。主要从事有机/无机纳米杂化材料的构筑、表征和性能研究。主持并完成国家自然科学基金、中国博士后科学基金、甘肃省自然科学基金等科研项目,在Carbon、Journal of Hazardous MaterialsJournal of Colloid and Interface Science等国内外重要刊物发表学术论文30余篇。
引用本文:    
师晓凤, 马应霞, 李鑫, 康小雅, 李晓华, 杨海军. 静电纺聚丙烯腈基纳米纤维对重金属离子吸附性能的研究进展[J]. 材料导报, 2022, 36(18): 20090131-9.
SHI Xiaofeng, MA Yingxia, LI Xin, KANG Xiaoya, LI Xiaohua, YANG Haijun. Research Progress on Adsorption Performance of Electrospun Polyacrylonitrile-based Nanofibers for Heavy-metal Ions. Materials Reports, 2022, 36(18): 20090131-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090131  或          http://www.mater-rep.com/CN/Y2022/V36/I18/20090131
1 Ha E, Basu N,Bose-O'Reilly S. Environmental Research, 2017, 152, 419.
2 Ibrahim M I A,Mohamed L A, Mahmoud M G, et al. The Egyptian Journal of Aquatic Research, 2019, 45(4), 329.
3 Carolin C F, Kumar P S, Saravanan A, et al. Journal of Environmental Chemical Engineering, 2017, 5(3), 2782.
4 Bilal M, Shah J A, Ashfaq T, et al. Journal of Hazardous Materials, 2013, 263, 322.
5 Wu Z J, He M C, Guo X J, et al. Separation and Purification Technology, 2010, 76(2), 184.
6 Mahmoud M R, Othman S H. Radiochimica Acta, 2018, 106(6), 465.
7 Sang Y M, Gu Q B, Sun T C, et al. Journal of Hazardous Materials, 2008, 153(1-2), 860.
8 Daɓrowski A, Hubicki Z, Podkościelny P, et al. Chemosphere,2004,56(2),91.
9 Zhu J, Wu F C, Pan X L, et al. Journal of Environmental Sciences, 2011, 23(7), 1066.
10 Ding C C, Cheng W C, Nie X Q, et al. Chemical Engineering Journal, 2017, 324, 113.
11 Huang Z M, Zhang Y Z, Kotaki M, et al. Composites Science and Technology, 2003, 63(15), 2223.
12 Shin Y M, Hohman M M, Brenner M M, et al. Polymer, 2001, 42(25), 09955.
13 Ding B, Kim H Y, Lee S C, et al. Journal of Polymer Science Part B: Polymer Physics, 2002, 40(13), 1261.
14 Shang Z B, Zhang L W, Zhao X Y, et al. Journal of Environmental Management, 2019, 231, 391.
15 Cao J, Xu G, Xie Y J, et al. RSC Advances, 2016, 6(63), 58088.
16 Kampalanonwat P, Supaphol P. Energy Procedia, 2014, 56, 142.
17 Xu G, Xie Y J, Cao J, et al. Polymer Chemistry, 2016, 7(23), 3874.
18 Kampalanonwat P, Supaphol P. Industrial & Engineering Chemistry Research, 2011, 50(21), 11912.
19 Yan C Q. Preparation of polyacrylonitrile chelating nanofiber membrane and its adsorption performance. Master's Thesis, Jilin University, China, 2016(in Chinese).
闫春秋. 聚丙烯腈螯合纳米纤维膜的制备及其吸附性能探究. 硕士学位论文, 吉林大学, 2016.
20 Jiang Y J. Preparation of functionalized polyacrylonitrile nanofibers by electrospinning and the sorption of U(VI). Master's Thesis, Lanzhou University, China, 2019(in Chinese).
姜芸捷. 电纺丝法制备功能化聚丙烯腈纳米纤维及其对U(VI)的吸附研究. 硕士学位论文, 兰州大学, 2019.
21 Saeed K, Haider S, Oh T J, et al. Journal of Membrane Science, 2008, 322(2), 400.
22 Avila M, Burks T, Akhtar F, et al. Chemical Engineering Journal, 2014, 245, 201.
23 Horzum N, Shahwan T, Parlak O, et al. Chemical Engineering Journal, 2012, 213, 41.
24 Kampalanonwat P, Supaphol P. ACS Applied Materials & Interfaces, 2010, 2(12), 3619.
25 Neghlani P K, Rafizadeh M, Taromi F A. Journal of Hazardous Mate-rials, 2011, 186(1), 182.
26 Morillo-Martín D, Faccini M, García M A, et al. Journal of Environmental Chemical Engineering, 2018, 6(1), 236.
27 Wang X F, Min M H, Liu Z Y, et al. Journal of Membrane Science, 2011, 379(1-2), 191.
28 Min M H, Shen L D, Hong G S, et al. Chemical Engineering Journal, 2012, 197, 88.
29 Wang J, Lu X, Ng P F, et al. Journal of Colloid and Interface Science, 2015, 440, 32.
30 Zhao R, Li X, Sun B L, et al. Journal of Materials Chemistry A, 2017, 5(3), 1133.
31 Liu J D, Jin C X, Wang C. Journal of Colloid and Interface Science, 2020, 561, 449.
32 Wang F, Lai Y J, Zhao B Y, et al. Chemical Communications, 2010, 46(21), 3782.
33 Li X, Zhang C C, Zhao R, et al. Chemical Engineering Journal, 2013, 229, 420.
34 Zhao R, Li X, Sun B L, et al. Chemical Engineering Journal, 2015, 268, 290.
35 Hu Y, Wu X Y, He X L, et al. Polymers for Advanced Technologies, 2019, 30(3), 545.
36 Chaúque E F C, Dlamini L N, Adelodun A A, et al. Applied Surface Science, 2016, 369, 19.
37 Hong G S, Shen L D, Wang M, et al. Chemical Engineering Journal, 2014, 244, 307.
38 Wang J Q, Pan K, He Q W, et al. Journal of Hazardous Materials, 2013, 244-245, 121.
39 Almasian A, Giahi M, Chizari-Fard G, et al. Chemical Engineering Journal, 2018, 351, 1166.
40 Feng Q, Wu D S, Zhao Y, et al. Journal of Hazardous Materials, 2018, 344, 819.
41 Hong G S, Li X, Shen L D, et al. Journal of Hazardous Materials, 2015, 295, 161.
42 Liu X X, Jiang B Y, Yin X, et al. Separation and Purification Technology, 2020, 233, 115976.
43 Luo C, Wang J L, Jia P, et al. Chemical Engineering Journal, 2015, 262, 775.
44 Huang M T, Tu H, Chen J J, et al. Applied Surface Science, 2018, 437, 294.
45 Sun B L, Li X, Zhao R, et al. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62, 219.
46 Shin K Y, Hong J Y, Jang J. Journal of Hazardous Materials, 2011, 190(1-3), 36.
47 Alizadeh B, Ghorbani M, Salehi M A. Journal of Molecular Liquids, 2016, 220, 142.
48 Yang X D, Wan Y S, Zheng Y L, et al. Chemical Engineering Journal, 2019, 366, 608.
49 Deng S, Liu X H, Liao J B, et al. Chemical Engineering Journal, 2019, 375, 122086.
50 Yang S T, Chang Y, Wang H, et al. Journal of Colloid and Interface Science, 2010, 351(1), 122.
51 Madadrang C J, Kim H Y, Gao G, et al. ACS Applied Materials & Interfaces, 2012, 4(3), 1186.
52 Hadi-Najafabadi H, Irani M, Roshanfekr-Rad L, et al. RSC Advances, 2015, 5(21), 16532.
53 Feng Z Q, Yuan X, Wang T. Chemical Engineering Journal, 2020, 392, 123730.
54 Rudd N D, Wang H, Fuentes-Fernandez E M, et al. ACS Applied Mate-rials & Interfaces, 2016, 8(44), 30294.
55 Wang C, Lin G, Zhao J L, et al. Chemical Engineering Journal, 2020, 380, 122511.
56 Ghaedi A M, Panahimehr M, Nejad A R S, et al. Journal of Molecular Liquids, 2018, 272, 15.
57 Jamshidifard S, Koushkbaghi S, Hosseini S, et al. Journal of Hazardous Materials, 2019, 368, 10.
58 Hua W K, Zhang T H, Wang M, et al. Chemical Engineering Journal, 2019, 370, 729.
[1] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[2] 刘利, 诸力维, 彭喜林, 周洋, 张楷彬, 孙浩荻, 李晓林. 污水中非正磷酸盐处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22050093-5.
[3] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[4] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[5] 吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
[6] 江幸, 孔勇, 赵志扬, 沈晓冬. 球形气凝胶材料的研究进展[J]. 材料导报, 2022, 36(8): 20040032-8.
[7] 张航, 马蓉, 弓亮, 黄丽丽, 陈南春, 解庆林, 马丽丽. 硅藻基Cr(VI)表面离子印迹吸附材料的制备及其对Cr(VI)的吸附性能[J]. 材料导报, 2022, 36(8): 21010050-7.
[8] 李燕, 陈梅芹, 乔艳辉, 康新平. 废白土-花生壳生物炭吸附剂的制备及对Pb(Ⅱ) 的吸附[J]. 材料导报, 2022, 36(6): 20110276-6.
[9] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[10] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[11] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[12] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[13] 贾冉, 许士才, 刘汉平, 刘辉兰, 乔梅, 刘国锋. 石墨烯光致掺杂研究进展[J]. 材料导报, 2022, 36(18): 20080248-14.
[14] 郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展[J]. 材料导报, 2022, 36(18): 20110092-16.
[15] 朱孟亚, 邹善娟, 尤楠. 纳米复合材料ZrO2@rGO吸附脱除水溶液中的阿散酸[J]. 材料导报, 2022, 36(17): 20110076-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed