Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 20110076-6    https://doi.org/10.11896/cldb.20110076
  无机非金属及其复合材料 |
纳米复合材料ZrO2@rGO吸附脱除水溶液中的阿散酸
朱孟亚, 邹善娟, 尤楠*
辽宁石油与化工大学石油化工学院,辽宁 抚顺 113001
ZrO2@rGO Nanocomposites for Adsorptive Removal of Arsanilic Acid from Aqueous Solution
ZHU Mengya, ZOU Shanjuan, YOU Nan*
College of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
下载:  全 文 ( PDF ) ( 4387KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 阿散酸(ASA)是一种应用广泛的有机砷类兽药,因其潜在的环境危害而受到关注。本工作采用水热一锅法在还原氧化石墨烯(rGO)表面上原位生长了ZrO2纳米颗粒,将制备得到的ZrO2@rGO纳米复合材料用于吸附去除ASA。通过透射电镜和扫描电镜观察发现,直径为20~50 nm的ZrO2纳米颗粒较均匀、致密地分布在rGO表面;XRD结果显示ZrO2纳米颗粒的晶型为单斜晶和四方晶的混合相。吸附试验结果表明:ZrO2@rGO对ASA的吸附容量为177.9 mg·g-1,其能够在45 min达到对ASA的吸附去除平衡; 在pH=2.9~7.1时,pH值对ASA的吸附去除没有显著影响;当pH>7.1时,随着pH值的增大,ASA的吸附量变小;在25~45 ℃下,随着温度的升高,ZrO2@rGO对ASA的吸附量也增大; 当离子强度小于0.1 mol·L-1时,离子强度对ZrO2@rGO吸附去除ASA没有显著影响;经过五次吸附-解吸循环后,再生的ZrO2@rGO对ASA的吸附量仍能达到新鲜ZrO2@rGO吸附量的85%;ASA在ZrO2@rGO表面的吸附过程可用Langmuir模型和准二级动力学方程来描述。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱孟亚
邹善娟
尤楠
关键词:  纳米复合材料  有机砷  吸附去除    
Abstract: Arsanilic acid (ASA), a widely used organic-arsenic veterinary drug, has greatly attracted attention due to its potential environmental threat.This work reported a ZrO2@rGO nanocomposite with ZrO2 nanoparticles growing on reduced graphene oxide (rGO) by a one-pot method for adsorptive removal of ASA from aqueous solution. The ZrO2 nanoparticles 20—50 nm in diameter are relatively evenly and densely covered on the rGO surface according to the observation of transmission and scanning electron microscope. X-ray diffraction patterns of ZrO2@rGO indicate the mixture of the monoclinic and tetragonal phases of ZrO2. The adsorptive capacity of ASA by the ZrO2@rGO is 177.9 mg·g-1, and the adsorption equilibrium of ASA by the ZrO2@rGO can be achieved within 45 min. The adsorption amount of ASA is independent of pH in the range of 2.9—7.1, decreases at pH>7.1 and increases with the increase in temperature from 25 ℃ to 45 ℃. The removal of ASA by the ZrO2@rGO is independent of ionic strengths below 0.1 mol·L-1. After five cycles of the adsorption-desorption, the adsorptive amount of ASA by the regenerative ZrO2@rGO can retain 85% of that by the fresh sorbents. The adsorption process of ASA by the ZrO2@rGO can be described by the Langmuir and the pseudo-second-order equations.
Key words:  nanocomposites    organic-arsenic    adsorptive removal
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  O647.3  
基金资助: 辽宁省自然科学基金-沈阳材料科学国家(联合)实验室联合开放基金(2015021019)
通讯作者:  *younan_77@163.com   
作者简介:  朱孟亚,本科毕业于河南科技学院制药工程专业,现为辽宁石油化工大学化学专业硕士研究生,主要研究方向为环境功能材料。
尤楠, 高级工程师,毕业于武汉理工大学化学工程与工艺专业,主要研究方向为环境功能材料和环境分析化学。在国内外学术期刊上发表论文20余篇,申请国家发明专利2项。
引用本文:    
朱孟亚, 邹善娟, 尤楠. 纳米复合材料ZrO2@rGO吸附脱除水溶液中的阿散酸[J]. 材料导报, 2022, 36(17): 20110076-6.
ZHU Mengya, ZOU Shanjuan, YOU Nan. ZrO2@rGO Nanocomposites for Adsorptive Removal of Arsanilic Acid from Aqueous Solution. Materials Reports, 2022, 36(17): 20110076-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110076  或          http://www.mater-rep.com/CN/Y2022/V36/I17/20110076
1 Jiang M, Jin H R, Tao Y, et al. Chinese Journal of Traditional Veterinary Science, 2019, 213(5), 98 (in Chinese).
江淼, 金慧然, 陶娅, 等. 中兽医学杂志, 2019, 213(5), 98.
2 Rutherford D W, Bednar A J, Garbarino J R, et al. Environmental Science and Technology, 2003, 37, 1515.
3 Zhu M, Cheng N N, Yang R Y, et al. Ecology and Environmental Sciences, 2020, 29(7), 1475(in Chinese).
朱濛, 程楠楠, 杨如意, 等. 生态环境学报, 2020, 29(7), 1475.
4 Xu J, Shen X, Wang D, et al. Chemical Engineering Journal, 2018, 336, 334.
5 Fan H T, Sun T, Xu H B, et al. Desalination, 2011, 278(1-3), 238.
6 Fan H, Fan X, Li J, et al.Industrial & Engineering Chemistry Research,2012, 51(14), 5216.
7 Poon L, Younus S, Wilson L D. Journal of Colloid and Interface Science, 2014, 420, 136.
8 Liu Y, Nie P, Yu F,Bioresource Technology, 2021, 320, 124373.
9 Zou S J, Ding B H, Chen Y F, et al. Environmental Research, 2021, 195, 110752.
10 Wang Y, Jiang B, Wang L, et al. Applied Surface Science, 2021, 540, 148372.
11 Wang J, Fan X, Dong Y Q, et al. Materials Reports A: Review Papers, 2015, 29(2),136 (in Chinese).
王劲, 樊勋, 董叶青, 等. 材料导报:综述篇, 2015, 29(2),136.
12 Tian C, Zhao J, Zhang J, et al.Environmental Science: Nano, 2017, 4, 2134.
13 Zhao Z, Wu P, Fang Z, et al.,Chemical Engineering Journal, 2020, 391, 123624.
14 Tian C, Zhao J, Ou X, et al. Environmental Science and Technology, 2018, 52, 3466.
15 Hang C, Li Q, Gao S, et al.Industrial & Engineering Chemistry Research, 2012, 51, 353.
16 Hummers W S, Offeman R E. Journal of the American Chemical Society,1958, 80, 1339.
17 Fan H T, Li J, Li Z C, et al. Applied Surface Science, 2012, 258 (8), 3815.
18 Chen X G, Chen J M, Song Y H. Materials Reports A: Review Papers, 2011, 25(9), 130 (in Chinese).
陈祥歌, 陈建铭, 宋云华. 材料导报:综述篇, 2011, 25(9), 130.
19 Salame I I, Bandosz T J. Journal of Colloid and Interface Science, 2001, 240, 252.
20 Jung B K, Jun J W, Hasan Z, et al. Chemical Engineering Journal, 2015, 267, 9.
21 Wu S Q, Zhang N. Contemporary Animal Husbandry, 2013 (20), 76 (in Chinese).
吴树强, 张宁. 当代畜牧, 2013 (20), 76.
22 Vilian A T, Chen S M, Ali M A, et al. RSC Advances, 2014, 4(57), 30358.
23 Singh B R, Shoeb M, Khan W, et al. Journal Alloys and Compounds, 2015, 651, 598.
24 Prabhu S M, Elanchezhiyan S S D, Lee G, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 834.
25 Jun J W, Tong M, Jung B K, et al. Chemistry-A European Journal, 2014, 20, 1.
26 Hao D, Song Y X, Zhang Y, et al. Applied Surface Science, 2021, 543,148810.
27 Fan H T, Wu J B, Fan X L, et al. Chemical Engineering Journal, 2012, 198-199, 355.
28 Li Z C, Fan H T, Zhang Y, et al. Chemical Engineering Journal, 2011, 171(7), 703.
29 Fan H T, Sun X T, Zhang Z G, et al. Journal of Chemical & Engineering Data, 2014, 59, 2106.
[1] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[2] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[3] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[4] 杨兆哲, 孔振武, 吴国民, 王思群, 谢延军, 冯鑫浩. 3D打印聚合物纳米复合材料的研究进展[J]. 材料导报, 2021, 35(13): 13177-13185.
[5] 王毓, 任俊鹏, 赵君, 周进康, 李小平. 磁性壳聚糖半互穿热膨胀水凝胶的制备及对Cr(Ⅵ)的吸附性能[J]. 材料导报, 2021, 35(10): 10205-10210.
[6] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[7] 裴贺兵, 莫尊理, 郭瑞斌, 刘妮娟, 贾倩倩, 高琴琴. 石墨烯量子点:兼具高效和环保的新型超级电容器电极材料[J]. 材料导报, 2020, 34(21): 21093-21098.
[8] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[9] 章强, 刘洪利, 陈迎豪, 李兴建, 张宜恒. 纳米二氧化硅改性“Click”型侧链含氟聚氨酯的制备及在织物整理剂上的应用[J]. 材料导报, 2020, 34(14): 14218-14222.
[10] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[11] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[12] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[13] 高党鸽, 王平平, 吕斌, 马建中. POSS/聚合物纳米复合材料制备方法的研究进展[J]. 材料导报, 2019, 33(3): 550-557.
[14] 姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
[15] 李旭飞, 车阳丽, 吕艳, 刘芳, 王永强, 赵朝成. 壳聚糖/无机物纳米复合材料在抗菌方面的研究进展[J]. 材料导报, 2018, 32(21): 3823-3830.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed