Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 20080248-14    https://doi.org/10.11896/cldb.20080248
  无机非金属及其复合材料 |
石墨烯光致掺杂研究进展
贾冉*, 许士才, 刘汉平, 刘辉兰, 乔梅, 刘国锋
德州学院物理与电子信息学院,山东 德州 253023
Photo-induced Doping in Graphene: a Review
JIA Ran*, XU Shicai, LIU Hanping, LIU Huilan, QIAO Mei, LIU Guofeng
College of Physics and Electronic Information, Dezhou University, Dezhou 253023, Shandong, China
下载:  全 文 ( PDF ) ( 14612KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯因其自身碳原子2D的sp2杂化结构特点以及优异的力学、光学和电学性能在能源、传感、生物医学和柔性可穿戴设备等领域具有广阔的发展前景。为了实现基于石墨烯的各种电子和光电子器件的实际应用,有效调控其掺杂及能带结构是亟须解决的重要问题之一。
相比于传统的晶格原子置换与表面化学修饰等方法,近十几年发展起来的一种基于外场的表面物理调控方法——光致掺杂调控法,由于具有调控灵活性好、掺杂浓度可控性强、操作容易且对石墨烯载流子迁移率影响小的优点已成为一个新的研究热点。在目前的研究中,石墨烯的光致掺杂主要通过表面气体分子吸附、衬底电荷作用以及光活性物质诱导三种方式实现并被应用于原位p-n结制备以及光电子器件(如太阳能电池和光电探测器)性能优化等方面。
本文综述了石墨烯光致掺杂的机制和研究现状,最后展望了其未来的发展前景。相比于其他光致掺杂方法,基于光活性物质诱导的石墨烯光致掺杂因具有掺杂速度快、浓度高、稳定性好以及可控性强的特点具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾冉
许士才
刘汉平
刘辉兰
乔梅
刘国锋
关键词:  石墨烯  光致掺杂  气体分子吸附  衬底电荷作用  光活性物质诱导    
Abstract: Graphene has broad prospects in the fields of energy, sensing, biomedicine and flexible wearable devices due to its unique 2D sp2-hybridized networks of carbon atoms and excellent mechanical, optical and electrical properties. In order to use graphene in various applications of electronic and optoelectronic devices, it is essential to precisely modulate its electronic properties through doping.
Compared with traditional chemical doping methods and the surface physical control strategy based on external field, photo-induced doping is an emerging research focus area due to better flexibility, easier manipulation and slighter influence on the carrier mobility of graphene. In the current research, photo-induced doping is mainly realized through the adsorbed molecules, substrate charges and photoactive substances, which have been applied to the preparation of in-situ p-n junctions and the performance optimization of optoelectronic devices (such as solar cells and photodetectors).
Herein, we review the mechanisms and research status of photo-induced doping and then look forward to its future development prospects. Compared with other methods, photo-induced graphene doping based on photoactive substances has broader application prospects due to the rapid speed, high concentration, preferable stability and controllability in doping.
Key words:  graphene    photo-induced doping    gas molecule absorption    substrate charge    photoactive substance induction
收稿日期:  2202-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TB321  
  O472+.4  
基金资助: 山东省高等学校科技计划项目(J18KA167);德州学院科技发展计划项目(2018kjrc03)
通讯作者:  *jiaran0518@163.com   
作者简介:  贾冉,德州学院物理与电子信息学院副教授。本硕均就读于曲阜师范大学物理工程学院,2010年本科毕业,2013年获理学硕士学位,2017年博士毕业于山东大学晶体材料研究所。主要从事薄膜半导体材料的界面改性和光电性质研究工作。获授权国家发明专利2项,目前已发表相关领域SCI论文10余篇。
引用本文:    
贾冉, 许士才, 刘汉平, 刘辉兰, 乔梅, 刘国锋. 石墨烯光致掺杂研究进展[J]. 材料导报, 2022, 36(18): 20080248-14.
JIA Ran, XU Shicai, LIU Hanping, LIU Huilan, QIAO Mei, LIU Guofeng. Photo-induced Doping in Graphene: a Review. Materials Reports, 2022, 36(18): 20080248-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080248  或          http://www.mater-rep.com/CN/Y2022/V36/I18/20080248
1 Geim A K, Novoselov K S. Nature Materials, 2007, 6(3), 183.
2 Kuzmenko A, Van Heumen E, Carbone F, et al. Physical Review Letters, 2008, 100(11), 117401.
3 Balandin A A, Ghosh S, Bao W, et al. Nano Letters, 2008, 8(3), 902.
4 Lee C, Wei X, Kysar J W, et al. Science, 2008, 321(5887), 385.
5 Schall D, Neumaier D, Mohsin M, et al. ACS Photonics, 2014, 1(9), 781.
6 Pang S, Hernandez Y, Feng X, et al. Advanced Materials, 2011, 23(25), 2779.
7 Khrapach I, Withers F, Bointon T H, et al. Advanced Materials, 2012, 24(21), 2844.
8 Liu C H, Chang Y C, Norris T B, et al. Nature Nanotechnology, 2014, 9(4), 273.
9 Wang F, Zhang Y, Tian C, et al. Science, 2008, 320(5873), 206.
10 Mak K F, Ju L, Wang F, et al. Solid State Communications, 2012, 152(15), 1341.
11 Ci L, Song L, Jin C, et al. Nature Materials, 2010, 9(5), 430.
12 Schedin F, Geim A K, Morozov S V, et al. Nature Materials, 2007, 6(9), 652.
13 Yu X, Yang L, Lv Q, et al. Nanoscale, 2015, 7(16), 7072.
14 O′Keeffe P, Catone D, Paladini A, et al. Nano Letters, 2019, 19(2), 684.
15 Hai X, Liu Y, Lei Y, et al. Optics Communications, 2020, 457(15), 124684.
16 Guo X, Feng Y, Liu Q, et al. Journal of Applied Physics, 2018, 123(17), 175701.
17 Yuan L, Zhang C, Zhang X, et al. Nano Letters, 2019, 19(7), 4413.
18 Hoik L, Keewook P, Soo K I. Synthetic Metals, 2018, 244, 36.
19 Guo B, Fang L, Zhang B, et al. Insciences Journal, 2011, 1(2), 80.
20 Johannsen J C, Ulstrup S, Crepaldi A, et al. Nano Letters, 2015, 15(1), 326.
21 Liu H, Liu Y, Zhu D. Journal of Materials Chemistry, 2011, 21(10), 3335.
22 Koch W, Holthausen M C. A chemist's guide to density functional theory, John Wiley & Sons, USA, 2015.
23 Guo B, Liu Q, Chen E, et al. Nano Letters, 2010, 10(12), 4975.
24 Wang H, Zhou Y, Wu D, et al. Small, 2013, 9(8), 1316.
25 Wei D, Liu Y, Wang Y, et al. Nano Letters, 2009, 9(5), 1752.
26 Li X, Wang H, Robinson J T, et al. Journal of the American Chemical Society, 2009, 131(43), 15939.
27 Childres I, Jauregui L A, Tian J, et al. New Journal of Physics, 2010, 13(2), 025008.
28 Yavari F, Kritzinger C, Gaire C, et al. Small, 2010, 6(22), 2535.
29 Docherty C J, Lin C T, Joyce H J, et al. Nature Communications, 2012, 3, 1228.
30 Giovannetti G, Khomyakov P, Brocks G, et al. Physical Review Letters, 2008, 101(2), 026803.
31 Wei P, Liu N, Lee H R, et al. Nano Letters, 2013, 13(5), 1890.
32 Dong X, Fu D, Fang W, et al. Small, 2010, 5(12), 1422.
33 Jang S K, Jang J R, Choe W S, et al. ACS Applied Materials & Interfaces, 2015, 7(2), 1250.
34 Hess L H, Lyuleeva A, Blaschke B M, et al. ACS Applied Materials & Interfaces, 2014, 6(12), 9705.
35 Luo Z, Pinto N J, Davila Y, et al. Applied Physics Letters, 2012, 100(25), 253108.
36 Kim Y D, Bae M H, Seo J T, et al. ACS Nano, 2013, 7(7), 5850.
37 Cao G, Liu X, Zhang Y, et al. ACS Applied Materials & Interfaces, 2019, 11(12), 12170.
38 Kim M, Safron N S, Huang C, et al. Nano Letters, 2012, 12(1), 182.
39 Ho P H, Chen C H, Shih F Y, et al. Advanced Materials, 2015, 27(47), 7809.
40 Fang Z, Liu Z, Wang Y, et al. Nano Letters, 2012, 12(7), 3808.
41 Ryu S, Liu L, Berciaud S, et al. Nano Letters, 2010, 10(12), 4944.
42 Xu Z, Ao Z, Chu D, et al. Scientific Reports, 2014, 4, 6450.
43 Meng J, Wu H C, Chen J J, et al. Small, 2013, 9(13), 2240.
44 Mitoma N, Nouchi R. Applied Physics Letters, 2013, 103(20), 201605.
45 Iqbal M Z, Siddique S, Iqbal M W, et al. Journal of Materials Chemistry C, 2013, 1(18), 3078.
46 Iqbal M Z, Siddique S, Rehman A. Diamond and Related Materials, 2018, 85, 112.
47 Iqbal M Z, Khan M F, Iqbal M W, et al. Journal of Materials Chemistry C, 2014, 2(27), 5404.
48 Iqbal M Z, Siddique S, Khan A, et al. Materials & Design, 2018, 159, 232.
49 Iqbal M Z, Rehman A, Siddique S. Applied Surface Science, 2018, 451, 40.
50 Wang H, Wu Y, Cong C, et al. ACS Nano, 2010, 4(12), 7221.
51 Yurgens A, Lindvall N, Sun J, et al. JETP Letters, 2014, 98(11), 704.
52 Imamura G, Saiki K. ACS Applied Materials & Interfaces, 2015, 7(4), 2439.
53 Sun Z, Liu Z, Li J, et al. Advanced Materials, 2012, 24(43), 5878.
54 Ho P H, Li S S, Liou Y T, et al. Advanced Materials, 2015, 27(2), 282.
55 Ju L, Velasco J, Huang E, et al. Nature Nanotechnology, 2014, 9(5), 348.
56 Velasco J, Ju L, Wong D, et al. Nano Letter, 2016, 16(3), 1620.
57 Guo S, Bao D, Upadhyayula S, et al. Advanced Functional Materials, 2013, 23(41), 5199.
58 Park M J, Kim Y, Kim Y, et al. Small, 2017, 13(35), 1603142.
59 Lin S, Li X, Zhang S, et al. Applied Physics Letters, 2015, 107(19), 191106.
60 Armano A, Buscarino G, Messina F, et al. Thin Solid Films, 2019, 669, 620.
61 Clavero C. Nature Photonics, 2014, 8(2), 95.
62 Fang Z, Wang Y, Liu Z, et al. ACS Nano, 2012, 6(11), 10222.
63 Syed S R, Lim G H, Flanders S J, et al. Applied Physics Letters, 2016, 109(10), 103103.
64 Knight M W, Wang Y, Urban A S, et al. Nano Letters, 2013, 13(4), 1687.
65 Wang F, Melosh N A. Nano Letters, 2011, 11(12), 5426.
66 Berini P. Laser & Photonics Reviews, 2014, 8(2), 197.
67 Hosseini T, Kouklin N A. Applied Physics Letters, 2014, 105(4), 043104.
68 Chen S Y, Lu Y Y, Shih F Y, et al. Carbon, 2013, 63, 23.
69 Liu X, Lee E K, Oh J H. Small, 2014, 10(18), 3700.
70 Kim S, Menabde S G, Jang M S, Advanced Electronic Materials, 2019, 5(3),1800940.
71 Li H, Su S, Liang C, et al. ACS Applied Materials & Interfaces, 2019, 11(46), 43351.
72 Jose B, Hossein S, Sergio A P, et al. Advanced Functional Materials, 2014, 24(32), 5147.
73 Loudwig S, Bayley H. Journal of the American Chemical Society, 2006, 128(38), 12404.
74 Robert T, Martin K, Doltsinis N L, et al. Physical Chemistry Chemical Physics, 2010, 12(42), 13922.
75 Tong X, Pelletier M, Lasia A, et al. Angewandte Chemie, International Edition in English, 2010, 120(19), 3652.
76 Peimyoo N, Li J, Shang J, et al. ACS Nano, 2012, 6(10), 8878.
77 Nägele T, Hoche R, Zinth W, et al. Chemical Physics Letters, 1997, 272(5-6), 489.
78 Shashikala H B M, Nicolas C I, Wang X Q. The Journal of Physical Chemistry C, 2012, 116(49), 26102.
79 Margapoti E, Strobel P, Asmar M M, et al. Nano Letters, 2014, 14(12), 6823.
80 Berkovic G, Krongauz V, Weiss V. Chemical Reviews, 2000, 100(5), 1741.
81 Joo P, Kim B J, Jeon E K, et al. Chemical Communications, 2012, 48(89), 10978.
82 Jang A R, Jeon E K, Kang D, et al. ACS Nano, 2012, 6(10), 9207.
83 Xu D, He J, Yu X, et al. Advanced Electronic Materials, 2017, 3(3), 1600516.
84 Seo B H, Youn J, Shim M. ACS Nano, 2014, 8(9), 8831.
85 Neumann C, Rizzi L, Reichardt S, et al. ACS Applied Materials & Interfaces, 2016, 8(14), 9377.
86 Konstantatos G, Badioli M, Gaudreau L, et al. Nature Nanotechnology, 2012, 7(6), 363.
87 Ho P H, Lee W C, Liou Y T, et al. Energy & Environmental Science, 2015, 8(7), 2085.
88 Wu J, Feng S, Wu Z, et al. RSC Advances, 2017, 7(53), 33413.
89 Lin Y J, Zeng J J. Applied Physics Letters, 2013, 102(18), 183120.
90 Tasolamprou A C, Koulouklidis A D, Daskalaki C, et al. ACS Photonics, 2019, 6(3), 720.
91 Lee J H, Lee W W, Yang D W, et al. ACS Applied Materials & Interfaces, 2018, 10(16), 14170.
[1] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[2] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[3] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[4] 李格, 韩彬, 李美艳, 刘鹏, 李朝晖. 石墨烯增强金属基复合涂层的研究进展[J]. 材料导报, 2022, 36(8): 20080127-7.
[5] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[6] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[7] 蔡中盼, 田茂诚, 张冠敏. 不同层数和尺寸的石墨烯对润滑油热物性能的影响[J]. 材料导报, 2022, 36(3): 20100213-8.
[8] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[9] 邓凯文, 牛荣军, 孙小波, 郭军力, 邓四二. 石墨烯改性多孔聚酰亚胺轴承保持架材料性能研究[J]. 材料导报, 2022, 36(17): 21030176-5.
[10] 汪超翔, 郭冲霄, 刘 悦, 范同祥. 采用固体碳源制备石墨烯薄膜研究进展[J]. 材料导报, 2022, 36(16): 21030237-9.
[11] 梁旭, 韩露, 雷雅京, 黎雯, 黄瑞滨, 陈荣生, 倪红卫, 詹玮婷. 基于氧化石墨烯/ZnO纳米阵列的无酶葡萄糖传感器[J]. 材料导报, 2022, 36(13): 21010061-6.
[12] 张帆, 纪志永, 汪婧, 郭志远, 方嘉炜, 郭小甫, 赵颖颖, 刘杰, 袁俊生. GO/LiMn2O4膜电极构建及其提锂性能研究[J]. 材料导报, 2022, 36(11): 21040052-7.
[13] 陈丽, 黄银, 于元烈. 石墨烯基纳米复合薄膜及其摩擦学研究进展[J]. 材料导报, 2022, 36(11): 20090218-8.
[14] 姚红蕊, 尹旭, 王娜, 齐舵, 姜岩. 二维纳米材料在金属防腐领域的应用研究进展[J]. 材料导报, 2022, 36(10): 20080261-9.
[15] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed