Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 22060239-13    https://doi.org/10.11896/cldb.22060239
  金属与金属基复合材料 |
金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展
鲁浩, 杨强, 孔赟*
长江大学资源与环境学院, 武汉 430100
Advances Research in Adsorption Removal and Oxidation Degradation of Organic Pollutants from Aquatic Environments by MOFs Materials
LU Hao, YANG Qiang, KONG Yun*
College of Resources and Environment, Yangtze University, Wuhan 430100, China
下载:  全 文 ( PDF ) ( 5177KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着水体环境中抗生素、内分泌干扰物及持久性有机物等大量新兴污染物的频繁检出,寻求高效、经济的污染物处理和治理技术迫在眉睫。金属有机框架(Metal organic frameworks,MOFs)材料是一类由金属离子或金属簇与有机配体结合的有机-无机杂化材料,具有孔隙率高、结构多样、孔径可调、配位点不饱和及功能可设计性强等特点,可广泛应用于有机污染物的吸附去除和氧化降解。本文综述了MOFs材料的合成方法及分类,阐述了其对水体中有机污染物的吸附和催化降解机理,探讨了温度、pH、MOFs浓度和离子强度等相关因素对MOFs材料去除污染物的影响,并对今后MOFs材料的研究方向进行了展望,以期为MOFs材料在环境污染修复领域的研究和应用提供理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲁浩
杨强
孔赟
关键词:  金属有机框架  有机污染物  吸附  催化  影响因素    
Abstract: With the frequent detection of a large number of emerging pollutants such as antibiotics, endocrine disruptors and persistent organic compounds in the aquatic environment, it is urgent to explore efficient and economic methods for treating these pollutants. Metal organic frameworks (MOFs), which have the advantages of high porosity, structural diversity, adjustable pore size, unsaturated coordination sites and strong designability, are a kind of organic-inorganic hybrid materials combing metal ions/metal clusters and organic ligands, and can be widely used in adsorption removal and oxidation degradation of organic pollutants from the aquatic environments. In this paper, the synthesis methods and classifications of MOFs materials are summarized, the adsorption and catalytic degradation mechanisms of organic pollutants are expounded, and the effects of temperature, pH value, concentration of MOFs and ionic strength on the removal of pollutants by MOFs materials are discussed. In addition, the future research directions of MOFs materials are prospected. It is hoped to provide a theoretical basis for the researches and applications of MOFs materials in the field of environmental pollution remediation.
Key words:  metal organic frameworks    organic pollutants    adsorption    catalysis    influencing factor
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  X-1  
  X506  
基金资助: 中国博士后科学基金项目(2016M591832);浙江省水体污染控制与环境安全技术重点实验室开放基金项目(2018ZJSHKF06);湖北省教育厅重点项目(D20191306 )
通讯作者:  * 孔赟,长江大学资源与环境学院副教授、硕士研究生导师。2006年武汉轻工大学环境工程专业本科毕业,2009年武汉轻工大学应用化学专业硕士毕业,2013年浙江大学环境工程专业博士毕业。目前主要从事水污染治理、水生态修改等方面的研究工作。发表论文30余篇,包括Journal of Hazardous Materials、Environmental Pollution、Bioresource Technology、Nanomaterials等。ky020241@hotmail.com   
作者简介:  鲁浩,2019年6月于洛阳理工学院获得工学学士学位。现为长江大学资源与环境学院硕士研究生,在孔赟教授的指导下进行研究。目前主要研究领域为水污染控制与修复。
引用本文:    
鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
LU Hao, YANG Qiang, KONG Yun. Advances Research in Adsorption Removal and Oxidation Degradation of Organic Pollutants from Aquatic Environments by MOFs Materials. Materials Reports, 2023, 37(4): 22060239-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060239  或          http://www.mater-rep.com/CN/Y2023/V37/I4/22060239
1 Cheng M, Lai C, Liu Y, et al. Coordination Chemistry Reviews, 2018, 368, 80.
2 Pang Y J, Liu C L, Pei L X. South-to-North Water Transfers and Water Science & Technology, 2013, 11(2), 104(in Chinese).
庞雅婕, 刘长礼, 裴丽欣. 南水北调与水利科技, 2013, 11(2), 104.
3 Lu S, Liu L B, Demissie H, et al. Environment International, 2021, 146, 106273.
4 Bhatnagar A, Anastopoulos L. Chemosphere, 2017, 168, 885.
5 Cheng Z H, Fu F L, Dionysiou D D, et al. Water Research, 2016, 96, 22.
6 Tran N H, Gin K Y H. Science of the Total Environment, 2017, 599, 1503.
7 Khader E H, Mohammed T J, Mirghaffari N, et al. Clean Technologies and Environmental Policy, 2022, 24(2), 713.
8 Cheng M, Zeng G M, Huang D L, et al. Chemical Engineering Journal, 2016, 284, 582.
9 Feng L, Wang K Y, Day G S, et al. Chemical Reviews, 2020, 120(23), 13087.
10 Tranchemontagne D J, Mendoza-Cortes J L, O'Keeffe M, et al. Chemical Society Reviews, 2009, 38(5), 1257.
11 Zhao D, Timmons D J, Yuan D Q, et al. Accounts of Chemical Research, 2011, 44(2), 123.
12 Jiang D N, Chen M, Wang H, et al. Coordination Chemistry Reviews, 2019, 380, 471.
13 Chen X M, Zhang J P. Metal organic frameworks, Chemical Industry Press, China, 2017, pp.3(in Chinese).
陈小明, 张杰鹏. 纳米材料前沿 金属-有机框架材料, 化学工业出版社, 2017, pp. 3.
14 Jhung S H, Khan N A, Hasan Z. Crystengcomm, 2012, 14(21), 7099.
15 Deria P, Mondloch J E, Karagiaridi O, et al. Chemical Society Reviews, 2014, 43(16), 5896.
16 Li H, Eddaoudi M, O'Keeffe M, et al. Nature, 1999, 402(6759), 276.
17 Kokcam-Demir U, Goldman A, Esrafili L, et al. Chemical Society Reviews, 2020, 49(9), 2751.
18 Huang Y M, Cao X Q, Yin J J, et al. Chinese Journal of Engineering, 2020, 42(6), 682(in Chinese).
黄祎萌, 曹晓强, 尹继洁, 等. 工程科学学报, 2020, 42(6), 680.
19 Li J R, Kuppler R J, Zhou H C. Chemical Society Reviews, 2009, 38(5), 1477.
20 Li J R, Sculley J, Zhou H C. Chemical Reviews, 2012, 112(2), 869.
21 Bao Z B, Chang G G, Xing H B, et al. Energy & Environmental Science, 2016, 9(12), 3612.
22 Lee J Y, Farha O K, Roberts J, et al. Chemical Society Reviews, 2009, 38(5), 1450.
23 Isaeva V I, Kustov L M. Petroleum Chemistry, 2010, 50(3), 167.
24 Hu Z C, Deibert B J, Li J. Chemical Society Reviews, 2014, 43(16), 5815.
25 Chen X M. In:Modern inorganic synthetic chemistry, Xu R R, Pang W Q, Huo Q S, ed. , Elsevier, Amsterdam, 2011, pp. 207.
26 Zhu A X, Lin R B, Qi X L, et al. Microporous and Mesoporous Materials, 2012, 157, 42.
27 Khan N A, Jhung S H. Coordination Chemistry Reviews, 2015, 285, 11.
28 Hayes B L. Aldrichimica Acta, 2004, 37, 66.
29 Khan N A, Haque M M, Jhung S H. European Journal of Inorganic Chemistry, 2010, 2010(31), 4975.
30 Wang X F, Zhang Y B, Huang H, et al. Crystal Growth & Design, 2008, 8(12), 4559.
31 Zhang L J, Li F Q, Ren J X, et al. Journal of Shanghai University of Electric Power, 2019, 35(3), 267 (in Chinese).
张林建, 李芳芹, 任建兴, 等. 上海电力学院学报, 2019, 35(3), 267.
32 Ren J W, Dyosiba X, Musyoka N M, et al. Coordination Chemistry Reviews, 2017, 352, 187.
33 Cohen S M. Chemical Reviews, 2012, 112(2), 970.
34 Volosskiy B, Niwa K, Chen Y, et al. Acs Nano, 2015, 9(3), 3044.
35 Juan-Alcaniz J, Gascon J, Kapteijn F. Journal of Materials Chemistry, 2012, 22(20), 10102.
36 He L C, Liu Y, Liu J Z, et al. Angewandte Chemie-International Edition, 2013, 52(13), 3741.
37 Meilikhov M, Yusenko K, Esken D, et al. European Journal of Inorganic Chemistry, 2010, 24, 3701.
38 Garcia-Munoz P, Fresno F, Lefevre C, et al. Acs Applied Materials & Interfaces, 2020, 12(51), 57025.
39 Yu J, Mu C, Yan B Y, et al. Materials Horizons, 2017, 4(4), 557.
40 Lu G, Li S Z, Guo Z, et al. Nature Chemistry, 2012, 4(4), 310.
41 Zhao M T, Deng K, He L C, et al. Journal of the American Chemical Society, 2014, 136(5), 1738.
42 Khaletskaya K, Reboul J, Meilikhov M, et al. Journal of the American Chemical Society, 2013, 135(30), 10998.
43 Wang L J, Deng H X, Furukawa H, et al. Inorganic Chemistry, 2014, 53(12), 5881.
44 Ma S Q, Sun D F, Ambrogio M, et al. Journal of the American Chemical Society, 2007, 129(7), 1858.
45 Ma S Q, Wang X S, Manis E S, et al. Inorganic Chemistry, 2007, 46(9), 3432.
46 Stock N, Biswas S. Chemical Reviews, 2012, 112(2), 933.
47 Zhao R, Shi X Y, Ma T T, et al. Acs Applied Materials & Interfaces, 2021, 13(1), 755.
48 Li C, Li N, Chang L M, et al. Acta chimica sinica, 2022, 80(3), 340.
李崇, 李娜, 常立美, 等. 化学学报, 2022, 80(3), 340.
49 Zhao F K, Fang S Q, Gao Y X, et al. Journal of Colloid and Interface Science, 2022, 615, 876.
50 Shen K, Chen X D, Chen J Y, et al. ACS Catalysis, 2016, 6(9), 5887.
51 Dang S, Zhu Q L, Xu Q. Nature Reviews Materials, 2017, 3(1), 17075.
52 Hussain M Z, Yang Z X, Huang Z, et al. Advanced Science, 2021, 8(14), 2100625.
53 Kaye S S, Dailly A, Yaghi O M, et al. Journal of the American Chemical Society, 2007, 129(46), 14176.
54 Su Y Y. Doping effects on hydrogenation and dehydrogenation properties of complex compound and MOF-5: mutiful simulation studies. Ph. D. Thesis, University of Science and Technology Beijing, China, 2018 (in Chinese).
余苏叶. 掺杂对络合物和MOF-5储放氢性能影响的多尺度模拟. 博士学位论文. 北京科技大学, 2018.
55 Park K S, Ni Z, Cote A P, et al. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27), 10186.
56 Sundberg R J, Martin R B. Chemical Reviews, 1974, 74(4), 471.
57 Wang C H, Liu X L, Chen J P, et al. Scientific Reports, 2015, 5, 16613.
58 Zhao D X, Cai C. Dyes and Pigments, 2021, 185, 108957.
59 Zhao J J, Yang Z Y, Meng Z Y, et al. New Chemical Materlals, 2020, 48(9), 24.
赵晶晶, 杨志远, 孟茁越, 等. 化工新型材料, 2020, 48(9), 24.
60 Al Sharabati M, Sabouni R. Polyhedron, 2020, 190, 114762.
61 Couck S, Gobechiya E, Kirschhock C E A, et al. Chemsuschem, 2012, 5(4), 740.
62 Boutin A, Couck S, Coudert F X, et al. Microporous and Mesoporous Materials, 2011, 140(1-3), 108.
63 Feng D W, Gu Z Y, Li J R, et al. Angewandte Chemie-International Edition, 2012, 51(41), 10307.
64 Li H, Zhai F W, Gui D X, et al. Applied Catalysis B-Environmental, 2019, 254, 47.
65 Lv D F, Shi R F, Chen Y W, et al. Industrial & Engineering Chemistry Research, 2018, 57, (36), 12215.
66 Zhang G Y, Zhuang Y H, Shan D, et al. Analytical Chemistry, 2016, 88(22), 11207.
67 Farha O K, Eryazici I, Jeong N C, et al. Journal of the American Chemical Society, 2012, 134(36), 15016.
68 Wang Z Y, Wang J J, Li M Y, et al. Scientific Reports, 2014, 4, 5939.
69 Devic T, Horcajada P, Serre C, et al. Journal of the American Chemical Society, 2010, 132(3), 1127.
70 Lebedev O I, Millange F, Serre C, et al. Chemistry of Materials, 2005, 17(26), 6525.
71 Morris W, Volosskiy B, Demir S, et al. Inorganic Chemistry, 2012, 51(12), 6443.
72 Müller M, Hermes S, Kähler K, et al. Chemistry of Materials, 2008, 20(14), 4576.
73 Gualino M, Roques N, Brandes S, et al. Crystal Growth & Design, 2015, 15(8), 3552.
74 Ding R D, Li Y L, Leng F, et al. Acs Applied Nano Materials, 2021, 4(9), 9790.
75 Serra-Crespo P, Ramos-Fernandez E V, Gascon J, et al. Chemistry of Materials, 2011, 23(10), 2565.
76 Yang L T, Cai P Y, Zhang L L, et al. Journal of the American Chemical Society, 2021, 143(31), 12129.
77 Abd El Salam H M, Zaki T. Inorganica Chimica Acta, 2018, 471, 203.
78 Chen Y W, Zhang X, Chen H Y, et al. Acs Applied Materials & Interfaces, 2020, 12(40), 44762.
79 Akpinar I, Drout R J, Islamoglu T, et al. Acs Applied Materials & Interfaces, 2019, 11(6), 6097.
80 Li H C, Cao X Y, Zhang C, et al. RSC Advances, 2017, 7(27), 16273.
81 Alqadami A A, Naushad M, Alothman Z A, et al. Journal of Environmental Management, 2018, 223, 29.
82 Haque E, Lee J E, Jang I T, et al. Journal of Hazardous Materials, 2010, 181(1-3), 535.
83 Chang P H, Chen C Y, Mukhopadhyay R, et al. Journal of Colloid and Interface Science, 2022, 623, 627.
84 Wu X Q, Huang D D, Wu Y P, et al. Acs Applied Energy Materials, 2019, 2(8), 5698.
85 Cui W, Kang X L, Zhang X Y, et al. Journal of Physics and Chemistry of Solids, 2019, 134, 165.
86 Zhang Z, Chen Y, Wang Z, et al. Applied Surface Science, 2021, 542, 148662.
87 Wu S C, You X, Yang C, et al. Water Science and Technology, 2017, 75(12), 2800.
88 Ahmed I, Jhung S H. Chemical Engineering Journal, 2017, 310, 197.
89 Ahmed I, Panja T, Khan N A, et al. Acs Applied Materials & Interfaces, 2017, 9(11), 10276.
90 Seo P W, Bhadra B N, Ahmed I, et al. Scientific Reports, 2016, 6, 34462.
91 Sadakiyo M, Yamada T, Kitagawa H. Journal of the American Chemical Society, 2011, 133(29), 11050.
92 Bhadra B N, Yoo D K, Jhung S H. Applied Surface Science, 2020, 504, 144348.
93 Ahamad M N, Khan M S, Shahid M, et al. Dalton Transactions, 2020, 49(41), 14690.
94 Azhar B, Angkawijaya A E, Santoso S P, et al. Scientific Reports, 2020, 10(1), 19212.
95 Hasan Z, Choi E J, Jhung S H. Chemical Engineering Journal, 2013, 219, 537.
96 Yi X H, Wang C C. Progress in Chemistry, 2021, 33(3), 471.
衣晓虹, 王崇臣. 化学进展, 2021, 33(3), 471.
97 Gao C, Chen S, Quan X, et al. Journal of Catalysis, 2017, 356, 125.
98 Li R B, Chen Z M, Cai M X, et al. Applied Surface Science, 2018, 457, 726.
99 Yue X X, Guo W L, Li X H, et al. Environmental Science and Pollution Research, 2016, 23(15), 15218.
100 Zhang X J. The study of Sulfate-radical Based Advanced Oxidation Processes for Degradation of BPA. Master’s Thesis, Zhengzhou University, China, 2019 (in Chinese).
张兴俊. 基于硫酸根自由基的高级氧化技术处理双酚A废水的试验研究. 硕士学位论文, 郑州大学, 2019.
101 Li H X, Xu S D, Du J, et al. Rsc Advances, 2019, 9(17), 9410.
102 Zhang Y, Zhou J B, Chen X, et al. Chemical Engineering Journal, 2019, 369, 745.
103 Gao Y W, Li S M, Li Y X, et al. Applied Catalysis B-Environmental, 2017, 202, 165.
104 Roy D, Neogi S, De S. Chemical Engineering Journal, 2022, 428, 131028.
105 Lin K Y A, Chang H A, Hsu C J. Rsc Advances, 2015, 5(41), 32520.
106 Ding S, Wan J Q, Ma Y W, et al. Journal of Hazardous Materials, 2021, 411, 125194.
107 Xu Y Y, Wang Y, Wan J Q, et al. Chemosphere, 2020, 240, 124849.
108 Gong Y, Yang B, Zhang H, et al. Journal of Materials Chemistry A, 2018, 6(46), 23703.
109 Zhang M, Wang C H, Liu C, et al. Journal of Materials Chemistry A, 2018, 6(24), 11226.
110 Zhao W S, Li G D, Tang Z Y. Nano Today, 2019, 27, 178.
111 Gao C, Wang J, Xu H X, et al. Chemical Society Reviews, 2017, 46(10), 2799.
112 Pattappan D, Vargheese S, Kavya K V, et al. Chemosphere, 2022, 286, 131726.
113 Tran T K N, Ho H L, Nguyen H V, et al. Open Chemistry, 2022, 20(1), 52.
114 Li W Q, Wang Y X, Chen J Q, et al. Applied Catalysis B-Environmental, 2022, 302, 120882.
115 Zhou E H, Hu W X, Ding Q J, et al. Inorganic Chemistry Communications, 2020, 120, 108155.
116 Tong Y Y, Li Y F, Sun L L, et al. Separation and Purification Technology, 2020, 250, 117142.
117 Shao W, Chen Y R, Xie F, et al. Rsc Advances, 2020, 10(63), 38174.
118 Zhou P, Yu J G, Jaroniec M. Advanced Materials, 2014, 26(29), 4920.
119 Fan Y Y, Ma W G, Han D X, et al. 2015, 27(25), 3767.
120 Mahmoodi N M, Taghizadeh A, Taghizadeh M, et al. Journal of Hazardous Materials, 2019, 378, 120741.
121 Yu J J, Sun D P, Wang T H, et al. Chemical Engineering Journal, 2018, 334, 225.
122 El-Fawal E M, Younis S A, Zaki T. Journal of Photochemistry and Photobiology a-Chemistry, 2020, 401, 112746.
123 Abdi J, Banisharif F, Khataee A. Journal of Molecular Liquids, 2021, 334, 116129.
124 Askari N, Beheshti M, Mowla D, et al. Chemosphere, 2020, 251, 126453.
125 Hou X B, Stanley S L, Zhao M, et al. Journal of Alloys and Compounds, 2019, 777, 982.
126 Zhang P, Shao C L, Li X H, et al. Journal of Hazardous Materials, 2012, 237, 331.
127 Pouran S R, Raman A A A, Daud W. Journal of Cleaner Production, 2014, 64, 24.
128 Nidheesh P V. Rsc Advances, 2015, 5(51), 40552.
129 Li W H, Wu X F, Li S D, et al. Applied Surface Science, 2018, 436, 252.
130 Moradi S E, Dadfarnia S, Shabani A M H, et al. Turkish Journal of Chemistry, 2017, 41(3), 426.
131 Lyu H L, Zhao H Y, Cao T C, et al. Journal of Molecular Catalysis a-Chemical, 2015, 400, 81.
132 Ibrahim A H, Haikal R R, Eldin R S, et al. Chemistryselect, 2021, 6(42), 11675.
133 Dang G H, Tran Y B N, Pham T V, et al. Chempluschem, 2019, 84(8), 1046.
134 Akbarbandari F, Zabihi M, Faghihi M. Water Environment Research, 2021, 93(6), 906.
135 Liu X X, Gong W P, Luo J, et al. Applied Surface Science, 2016, 362, 517.
136 Azhdari R, Mousavi S M, Hashemi S A, et al. Journal of Environmental Chemical Engineering, 2019, 7(6), 103437.
137 Ahsan M A, Jabbari V, Islam M T, et al. Science of The Total Environment, 2019, 673, 306.
138 Kuo C Y. Desalination, 2009, 249(3), 976.
139 Fasfous I I, Radwan E S, Dawoud J N. Applied Surface Science, 2010, 256(23), 7246.
140 Liu Y. Journal of Chemical & Engineering Data, 2009, 54(7), 1981.
141 Li Y. Preparation of New Doped Zn Metal-Organic Framework Material and their Application for Antibiotic. Master’s Thesis, Hunan University, China, 2020 (in Chinese).
李瑶. 新型掺杂Zn2+金属有机框架材料的制备及抗生素吸附研究. 硕士学位论文, 湖南大学, 2020.
142 Yu H B, Hu W Y, Liu J Y, et al. Chinese Journal of Environmental Engineering, 2020, 14(9), 2506.
喻海彬, 胡文勇, 刘静怡, 等. 环境工程学报, 2020, 14(9), 2506.
143 Wang Y, Li X, Hu X L, et al. Journal of Solid State Chemistry, 2020, 289, 121443.
144 Yang S, Qiu X, Jin P, et al. Chemical Engineering Journal, 2018, 353, 329.
145 You J J, Zhang C Y, Wu Z L, et al. Chemical Engineering Journal, 2021, 415, 128890.
146 Aldawsari A M. Separation Science and Technology, 2021, 56(3), 474.
147 Liu C, Wang Y P, Zhang Y T, et al. Chemical Engineering Journal, 2018, 354, 835.
148 Li H X, Yang Z X, Lu S, et al. Chemosphere, 2021, 273, 129643.
149 Zhang W Y, Yin C K, Jin Y Z, et al. Inorganic Chemistry Communications, 2021, 126, 108498.
150 Liu W C, Shen X, Han Y Y, et al. Chemosphere, 2019, 215, 524.
151 Yang R X, Peng Q H, Yu B, et al. Separation and Purification Technology, 2021, 267, 118620.
152 Yang Y, Fu P, Li X, et al. Inorganic Chemistry Communications, 2020, 122, 108282.
153 Sajjadi S, Khataee A, Bagheri N, et al. Journal of Industrial and Engineering Chemistry, 2019, 77, 280.
154 Zhang H. Activation of Hydrogen Peroxide by CNTs/MIL-88B-Fe for Degradation of Organic Pollutants. Master’s Thesis, Dalian University of Technology, China, 2019 (in Chinese).
张航. CNTs/MIL-88B-Fe复合催化剂活化双氧水降解有机污染物性能研究. 硕士学位论文, 大连理工大学, 2019.
155 Naushad M, Alothman Z A. Desalination and Water Treatment, 2015, 53(8), 2158.
156 Padmavathy K S, Madhu G, Haseena P V. Procedia Technology, 2016, 24, 585.
157 Tehrani M S, Zare-Dorabei R. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 160, 8.
158 Yang C, Wu S C, Cheng J H, et al. Journal of Alloys and Compounds, 2016, 687, 804.
159 Liu H C, Ren X H, Chen L G. Journal of Industrial and Engineering Chemistry, 2016, 34, 278.
160 Cui Y, Sun G F, Ren S Y, et al. Environmental Science & Technology, 2019, 42(3), 103.
崔颖, 孙国峰, 任苏瑜, 等. 环境科学与技术, 2019, 42(3), 103.
161 Grover P K, Ryall R L. Chemical Reviews, 2005, 105(1), 1.
162 Wu Z G, Liu H N, Zhang H F. Environmental Chemistry, 2010, 29(6), 997 (in Chinese).
吴志坚, 刘海宁, 张慧芳. 环境化学, 2010, 29(6), 997.
163 Li S Q, Zhang X D, Huang Y M. Journal of Hazardous Materials, 2017, 321, 711.
164 Wang T, Zhao P, Lu N, et al. Chemical Engineering Journal, 2016, 295, 403.
165 Li K, Li J J, Zhao N, et al. Molecules (Basel, Switzerland), 2020, 25(6), 1312.
166 Liang C J, Wang Z S, Mohanty N. Science of the Total Environment, 2006, 370(2), 271.
167 Wang Z W, Li Q, Su R D, et al. Chemical Engineering Journal, 2022, 428, 132106.
168 El-Fawal E M, Younis S A, Zaki T. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112746.
169 Guan Z Y, Zhu S B, Ding S, et al. Chemosphere, 2022, 299, 134481.
170 Yang L X, Yang J C E, Fu M L. Chemosphere, 2021, 272, 129567.
171 Huang X, Wang Y Q, Wang Q G, et al. Separation and Purification Technology, 2022, 290, 120860.
172 El Asmar R, Baalbaki A, Abou Khalil Z, et al. Chemical Engineering Journal, 2021, 405, 126701.
[1] 于舒睿, 杨继凯, 杨雪, 王国政, 尹笑乾. WO3/CuWO4复合薄膜的制备及光电化学性能[J]. 材料导报, 2023, 37(4): 21070015-6.
[2] 张理元, 阳金菊, 尤佳. 以PVP为软模板构建的层状介孔TiO2及其光催化性能[J]. 材料导报, 2023, 37(4): 21080004-6.
[3] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[4] 祖丽呼玛尔·木沙江, 赵静, 肖鹏飞. 金属基纳米材料在过硫酸盐高级氧化工艺中的应用进展[J]. 材料导报, 2023, 37(4): 21040022-8.
[5] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[6] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[7] 孙富丽, 张炜, 俞一帆, 盛殷笑, 庄桂林. 二氧化铈负载型催化剂的研究进展[J]. 材料导报, 2023, 37(3): 22120058-12.
[8] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[9] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[10] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[11] 杨亚苹, 李艳辉, 张伟. 脱合金化法制备纳米多孔铂合金的研究进展[J]. 材料导报, 2023, 37(3): 21020061-7.
[12] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[13] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[14] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[15] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed