Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21080004-6    https://doi.org/10.11896/cldb.21080004
  无机非金属及其复合材料 |
以PVP为软模板构建的层状介孔TiO2及其光催化性能
张理元1,2,*, 阳金菊1, 尤佳1
1 内江师范学院化学化工学院,四川 内江 641112
2 果类废弃物资源化四川省高校重点实验室,四川 内江 641112
Construction of Layered Mesoporous TiO2 Using PVP as Soft Template and Its Photocatalytic Performance
ZHANG Liyuan1,2,*, YANG Jinju1, YOU Jia1
1 College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641112, Sichuan, China
2 Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Sichuan Provincial College, Neijiang 641112, Sichuan, China
下载:  全 文 ( PDF ) ( 8648KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚乙烯吡咯烷酮(PVP)为软模板、硫酸钛为钛源,采用无机沉淀-胶溶法制备了层状介孔PVP-TiO2。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、紫外可见吸收光谱(UV-Vis-Abs)、比表面积分析仪(BET)分别对样品的表面形貌、晶相组成、紫外吸收带边、比表面积和孔结构进行了表征分析,对层状结构的形成机理进行了研究。以甲基橙为目标降解物,研究了样品的光催化性能。结果表明:在相同条件下,PVP-TiO2对甲基橙的最佳降解率达到93.84%,明显高于纯TiO2。经PVP改性后,TiO2试样出现了层状介孔结构,结晶度和晶粒尺寸均减小,促进了锐钛矿向金红石相的转变,并且PVP的引入使得TiO2的光吸收带边发生了一定的蓝移。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张理元
阳金菊
尤佳
关键词:  沉淀-胶溶法  PVP  软模板  层状介孔TiO2  光催化    
Abstract: The layered mesoporous PVP-TiO2 was prepared by inorganic precipitation-peptization method using titanium sulfate as titanium source and polyvinylpyrrolidone as soft template. The surface morphology, crystal phase composition, ultraviolet absorption band edge, specific surface area and pore structure of the samples were characterized by scanning electron microscopy (SEM), X-Ray diffractometer (XRD), ultraviolet visible absorption spectrum (UV-Vis-Abs), and specific surface area meter (BET), respectively. The formation mechanism of layered structure was studied as well. The photocatalytic properties of the samples were studied by using methyl orange as the target degradation product. The results showed that the best degradation rate of methyl orange by PVP-TiO2 reached 93.84%, which was significantly higher than that of pure TiO2 under the same conditions. After TiO2 was modified by PVP, layered mesoporous structure was formed, and the crystallinity and grain size were decreased, promoting the transition from anatase to rutile crystal. In addition, the introduction of PVP made a blue shift of the light absorption band edge of TiO2.
Key words:  precipitation-peptization method    PVP    soft template    layered mesoporous TiO2    photocatalysis
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TB34  
基金资助: 四川省科技计划(2023YFG0247)
通讯作者:  * 张理元,内江师范学院化学化工学院教授。2008年6月毕业于海南大学材料科学与工程专业,获工学学士学位;2011年6月毕业于海南大学材料物理与化学专业,获工学硕士学位;2014年12月毕业于四川大学材料学专业,获工学博士学位。主要从事无机功能材料、环境保护材料研究。主持四川省科技计划项目2项、四川省教育厅重点项目1项。近几年,以第一作者在国内外重要期刊发表学术论文30余篇,其中SCI/EI收录20余篇。zhangliyuansir@126.com   
引用本文:    
张理元, 阳金菊, 尤佳. 以PVP为软模板构建的层状介孔TiO2及其光催化性能[J]. 材料导报, 2023, 37(4): 21080004-6.
ZHANG Liyuan, YANG Jinju, YOU Jia. Construction of Layered Mesoporous TiO2 Using PVP as Soft Template and Its Photocatalytic Performance. Materials Reports, 2023, 37(4): 21080004-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080004  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21080004
1 Wood R J, Sidnell T, Ross I, et al. Ultrasonics Sonochemistry, 2020, 68, 105196.
2 Budnikova Y G, Tazeev D I, Gryaznova T V, et al. Russian Journal of Electrochemistry, 2006, 42(10), 1127.
3 Nissanka B, Kottegoda N, Jayasundara D R. Journal of Materials Science, 2020, 55(5), 1996.
4 Lee S Y, Kang D, Jeong S, et al. ACS Omega, 2020, 5(8), 4233.
5 Lee Y J, Kang J K, Park S J, et al. Chemical Engineering Journal, 2020, 402, 126183.
6 Lang S, Zhao K, Liu S. Materials Letters, 2018, 228, 121.
7 Zhao Y, Yin B, Zhang G, et al. Iet Micro & Nano Letters, 2018, 13(1), 9.
8 Li Q, Lu M, Wang W, et al. Applied Surface Science, 2019, 508, 144182.
9 Nagaraju P, Puttaiah S H, Wantala K, et al. Applied Water Science, 2020, 10(6), 1.
10 Zhang L Y, You J, Li Q W, et al. Coatings, 2020, 10(1), 27.
11 Wang N, Wang J, Liu M N, et al. Scientific Reports, 2021, 11(1), 7509.
12 Fatemeh F, Mehdi E, Ramin Z, et al. Scientific Reports, 2019, 9(6), 227.
13 Hu Y X, Pan Y Y, Wang Z L, et al. Nature Communications, 2020, 11(1), 6446.
14 Wang Z J, Liu Z, Chen J Z, et al. Journal of Energy Chemistry, 2019, 31(4), 34.
15 Hu L B, Wei Z X, Yu F, et al. Journal of Energy Chemistry, 2019, 39(12), 152.
16 Cheng S, Gao Y J, Yan Y L, et al. Journal of Energy Chemistry, 2019, 39(12), 144.
17 Thuong H T T, Kim C T T, Quang L N, et al. Progress in Natural Science:Materials International, 2019, 29(6), 641.
18 Wei Y Y, Han B, Dong Z J, et al. Journal of Materials Science & Technology, 2019, 35(9), 1951.
19 Wang J J, He B H, Wei X Y, et al. Journal of Environmental Sciences, 2019, 75(1), 115.
20 Chen M Y, Zhao M M, Tang F S, et al. Journal of Rare Earths, 2017, 35(12), 1206.
21 Zhang L Y, You J, Li Q W, et al. Coatings, 2019, 9(12), 824.
22 Kitazawa S, Choi Y, Yamamoto S, et al. Thin Solid Films, 2006, 515(4), 1901.
23 Bakardjieva S, Šubrt J, Štengl V, et al. Applied Catalysis B: Environmental, 2005, 58(3-4), 193.
24 Fang D, Luo Z, Huang K, et al. Applied Surface Science, 2011, 257(15), 6451.
25 Zhang L Y, You J, Zhong Y J, et al. Materials Reports B:Research Papers, 2020, 34(12), 24014.
张理元, 尤 佳, 钟雅洁, 等. 材料导报:研究篇, 2020, 34(12), 24014.
26 Jung S C, Kim S J, Imaishi N, et al. Applied Catalysis B: Environmental, 2005, 55(4), 253.
27 Zhou W, Fu H G. ChemCatChem, 2013, 5(4), 885.
28 Hu W H, Huang J G, Zhang X, et al. Applied Surface Science, 2020, 507, 145168.
29 Li H J, Wu S J, Hood Z D, et al. Applied Surface Science, 2020, 513, 145723.
30 He G Y, Zhang J H, Hu Y, et al. Applied Catalysis B: Environmental, 2019, 250, 301.
31 Wang R C, Lan K, Liu B B, et al. Chemical Physics, 2019, 516, 48.
32 Li B, Zhao J, Liu J, et al. RSC Advances, 2015, 5(20), 15572.
33 Barka-Bouaifel F, Makaoui K, Jouan P Y, et al. RSC Advances, 2012, 2(32), 12482.
34 Wang B, Zhang G X, Zheng S L, et al. Journal of Inorganic Materials, 2014, 29(4), 382.
汪滨, 张广心, 郑水林, 等. 无机材料学报, 2014, 29(4), 382.
35 Miyagi T, Kamei M, Mitsuhashi T, et al. Chemical Physics Letters, 2004, 390(4-6), 399.
36 Niu J, Wang D, Qin H L, et al. Nature Communications, 2014, 5(1), 1.
37 Yuan S L, Cai Z T, Xu G Y. Acta Chimica Sinica, 2002, 60(2), 241.
苑世领, 蔡政亭, 徐桂英. 化学学报, 2002, 60(2), 241.
38 Feng X D, Imran Q, Zhang Y Z, et al. Science Advances, 2019, 5(8), 9308.
39 Su D W, Dou S X, Wang G X. Chemistry of Materials, 2015, 27(17), 6022.
40 Shang C, Zhao W N, Liu Z P. Journal of Physics: Condensed Matter, 2015, 27(13), 134203.
41 Lv J, He Z Y, Wu Y C, et al. Transactions of Materials and Heat Treatment, 2010, 31(12), 19.
吕珺, 何早阳, 吴玉程, 等. 材料热处理学报, 2010, 31(12), 19.
42 Jiang H Q, Wang P, Lu D D, et al. Chinese Journal of Inorganic Chemistry, 2006, 22(1), 73.
姜洪泉, 王鹏, 卢丹丹, 等. 无机化学学报, 2006, 22(1), 73.
43 Jia T, Zhang J, Wu J, et al. Materials Letters, 2020, 265, 127465.
44 Ramakrishnan V M, Muthukumarasamy N, Balraju P, et al. International Journal of Hydrogen Energy, 2020, 45(31), 15441.
45 Kurniawan T A, Mengting Z, Fu D, et al. Journal of Environmental Management, 2020, 270, 110871.
46 Zhuo N, Li L, Gao Y, et al. Chinese Journal of Inorganic Chemistry, 2013, 29(5), 991.
禚娜, 李莉, 高宇, 等. 无机化学学报, 2013, 29(5), 991.
[1] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[2] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[3] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[4] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[5] 唐飞, 蔡文宇, 陈飞, 朱晨, 刘成宝, 陈志刚. g-C3N4/过渡金属硫化物复合材料的结构设计、合成及光催化应用[J]. 材料导报, 2023, 37(1): 20100135-9.
[6] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[7] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[8] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[9] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[10] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[11] 刘毅, 冯紫娟, 贾雯, 吴雪, 郑旭煦, 袁小亚. 一步溶剂热法合成Bi2S3/BiOBr多级异质结及其增强可见光光催化去除RhB的研究[J]. 材料导报, 2022, 36(24): 21030140-8.
[12] 杨振清, 项文丽, 矫玉秋, 王郭晨, 于月宁, 徐慧英, 邵长金. 均相光催化制氢体系有机染料光敏剂的研究进展[J]. 材料导报, 2022, 36(24): 20100177-15.
[13] 黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
[14] 蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 22030040-7.
[15] 陈龙, 刘兆利, 杨旭东, 张偌涵, 孙玮良, 刘文. 纳米材料光催化灭活新型冠状病毒SARS-CoV-2研究进展与启示[J]. 材料导报, 2022, 36(20): 22100084-12.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed