Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 20100177-15    https://doi.org/10.11896/cldb.20100177
  高分子与聚合物基复合材料 |
均相光催化制氢体系有机染料光敏剂的研究进展
杨振清*, 项文丽, 矫玉秋, 王郭晨, 于月宁, 徐慧英, 邵长金
中国石油大学(北京)理学院,北京市油气光学探测技术重点实验室,北京 102249
Research Progress of Organic Photosensitizers for Homogeneous Photocatalytic Hydrogen Production System
YANG Zhenqing*,XIANG Wenli, JIAO Yuqiu,WANG Guochen, YU Yuening, XU Huiying, SHAO Changjin
Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, China
下载:  全 文 ( PDF ) ( 6180KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢能是一种理想的清洁型新能源,在可再生能源中占据重要地位。现阶段国内氢能的发展仍然面临技术不成熟导致的生产效率较低、制氢体系不稳定及氢能应用的综合成本过高等问题,从而阻碍了氢能产业链的发展。我国在碱性电解水制氢与煤气化制氢方面的技术优势明显,制氢规模位居世界首位,但在可再生能源制氢如光催化制氢、电催化制氢等方面,与国际顶尖技术相比还存在较大差距。
光催化制氢技术分为非均相制氢和均相制氢两种。由于非均相制氢体系多以半导体为光催化剂,其光吸收效率低且产氢效率并不理想。对于由光敏剂、催化剂和牺牲电子供体组成的均相体系而言,其结构组成简单,便于灵活的系统设计,是颇具潜力的制氢技术。其中光敏剂作为制氢反应的能量捕获器,其选取尤为关键。目前研究最多的是贵金属及其配合物类光敏剂,然而贵金属资源少、成本高,限制了进一步发展。采用纯有机染料代替贵金属基光敏剂构建非贵金属光催化制氢体系有望为均相光催化制氢体系的发展带来新突破。
非贵金属光催化制氢体系中的纯有机光敏剂主要分为含氮杂环类、氧杂蒽醌类、氟硼吡咯类和香豆素类等。目前对纯有机染料光催化制氢性能的研究表明其制氢效率要远高于相同实验条件下的金属基光敏剂。由于有机染料存在良好的构效特性,通过结构的设计和修饰可以达到改变和优化光敏剂性能的目的。并且纯有机染料不含金属类元素,具有低廉的成本、丰富的资源,便于合成,逐渐成为该领域研究人员的新宠。
本文从均相光催化制氢体系出发,简要介绍了包括体系基本组成、结构类型、光化学理论基础以及制氢机理分析与性能的研究,重点而详细地综述了有机染料为光敏剂的非贵金属光催化制氢体系的研究进展,并对应用有机染料作为制氢体系光敏剂突出特性的筛选设计做出展望,进一步明确未来氢能源技术的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨振清
项文丽
矫玉秋
王郭晨
于月宁
徐慧英
邵长金
关键词:  光催化  水分解制氢  均相体系  有机染料    
Abstract: Hydrogen energy is kind of an ideal clean new energy and plays an important role in renewable energy. At this stage, the development of hydrogen energy in China still faces many challenges, such as the low production efficiency due to the immature technologies, the instability of hydrogen production system, and the high cost of hydrogen energy applications, which hinders the development of hydrogen energy industry. China has obtained leading technological advantages in hydrogen productions from alkaline electrolytic water and coal gasification. Although China ranks first in the scale of hydrogen productions, there is still a big gap between China and the international top technologies in renewable energy hydrogen production, such as photocatalytic and electrocatalytic hydrogen production.
Generally, photocatalytic hydrogen production technology can be divided into two types, heterogeneous and homogeneous hydrogen production technologies. Since most heterogeneous hydrogen production systems use semiconductors as photocatalysts, their light absorption efficiency is low and hydrogen production efficiency is not high. For a homogeneous system composed of photosensitizers, catalysts and sacrificial electron donors, it is a potential hydrogen production technology because of its flexible structure easy to design and adjust systematically. Among them, the photosensitizer is used as the energy harvester for the hydrogen production reaction, and its selection is particularly critical. Recently, noble metals and their complexes photosensitizers have been widely studied. Owing to its limited resource and high cost, the research and development of noble metals based photosensitizers are restricted. As an alternative, the use of pure organic dyes to construct non-noble metal photocatalytic hydrogen production systems is expected to bring a new breakthrough in the development of homogeneous photocatalytic hydrogen production system.
In the non-noble metal photocatalytic hydrogen production system, the pure organic photosensitizers are mainly divided into nitrogenous heterocycles, xanthenes, bodipys and coumarins. The current research on the photocatalytic performance of pure organic dyes for hydrogen production shows that their hydrogen production efficiency is much higher than that of metal-based photosensitizers. Because organic dyes have good structure-activity characteristics, the performance of photosensitizers can be changed and optimized by structural design and modification. In addition, pure organic dyes do not contain metal elements, are cost-effective, rich in resources, and easy to synthesize, and thus have gradually arose much attention in hydrogen production.
In this review,we firstly discussed the homogeneous photocatalytic hydrogen production system, including its basic composition, structure types, photochemical theoretical basis, hydrogen production mechanism analysis and performance research. The advances of non-noble metal photocatalytic hydrogen production system with organic dyes as photosensitizer is reviewed with particular emphasis. Finally, current trends related to the screening design of using organic dyes as photosensitizers for hydrogen production system is outlined, and we further clarified the development direction of hydrogen energy technology.
Key words:  photocatalysis    hydrogen production    homogeneous system    organic photosensitizers
出版日期:  2022-12-28      发布日期:  2023-01-03
ZTFLH:  TQ116  
基金资助: 中国石油大学(北京)基础学科振兴计划(2462020XKJS02); 山西省科技重大专项深部煤层气增产改造及储层保护技术(20181101013);国家自然科学基金(21625601)
通讯作者:  yangzhq@cup.edu.cn   
作者简介:  杨振清,中国石油大学(北京)副教授,本硕博分别毕业于临沂大学、中国石油大学(北京)物理学、北京化工大学。2016年至2017年为剑桥大学卡文迪许实验室博士后研究员。发表SCI论文50余篇,发明专利10余项,专著两部。目前,主要研究方向为用机器学习、数据挖掘及密度泛函理论设计新能源材料,探究半导体表面光诱导电荷传输机制。
引用本文:    
杨振清, 项文丽, 矫玉秋, 王郭晨, 于月宁, 徐慧英, 邵长金. 均相光催化制氢体系有机染料光敏剂的研究进展[J]. 材料导报, 2022, 36(24): 20100177-15.
YANG Zhenqing, XIANG Wenli, JIAO Yuqiu, WANG Guochen, YU Yuening, XU Huiying, SHAO Changjin. Research Progress of Organic Photosensitizers for Homogeneous Photocatalytic Hydrogen Production System. Materials Reports, 2022, 36(24): 20100177-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100177  或          http://www.mater-rep.com/CN/Y2022/V36/I24/20100177
1 Lewis N S, Nocera D G. Proceedings of the National Academy of Sciences, 2006, 103(43), 15729.
2 Rafique M, Mubashar R, Irshad M, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(10), 3837.
3 Berardi S, Drouet S, Francas L, et al. Chemical Society Reviews, 2014, 43(22), 7501.
4 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
5 Bowker M, Morton C, Kennedy J, et al. Journal of Catalysis, 2014, 310(1), 10.
6 Christoforidis K C, Fornasiero P. ChemCatChem, 2017, 9(9), 1523.
7 Jing L, Wang D, Xu Y, et al. Journal of Colloid and Interface Science, 2020, 566, 171.
8 Sielicki K, Aleksandrzak M, Mijowska E. Applied Surface Science, 2020, 508, 145144.1.
9 Christoforidis K C, Fornasiero P. ChemCatChem, 2019, 11(1), 368.
10 Corredor J, Rivero M J, Rangel C M, et al. Journal of Chemical Technology & Biotechnology, 2019, 94(10), 1467.
11 Wang X Z, Li Z J, Wu, L Z, et al. Energy & Environmental Science, 2016, 9, 2083.
12 Li D F, Zheng J, Chen X Y, et al. Progress in Chemistry, 2007, 19(4), 464(in Chinese).
李敦钫, 郑菁, 陈新益, 等. 化学进展, 2007, 19(4), 464.
13 Wen F Y, Yang J H, Zong X, et al. Progress in Chemistry, 2009, 21(11), 2285. (in Chinese).
温福宇, 杨金辉, 宗旭, 等. 化学进展, 2009, 21(11), 2285.
14 Huang J F, Lei Y, Luo T, et al. ChemSusChem, 2020, 13, 5863.
15 Pan J B, Shen S, Zhou W, et al. Acta Physico-Chimica Sinica, 2020, 36(3), 1905068. (in Chinese).
潘金波, 申升, 周威, 等. 物理化学学报, 2020, 36(3), 1905068.
16 Yang K, Li X X, Zeng D B, et al. Chinese Journal of Catalysis, 2019(6), 796. (in Chinese).
杨凯, 李笑笑, 曾德彬, 等. 催化学报, 2019(6), 796.
17 Zhang J, Xu Q, Feng Z, et al. Angewandte Chemie International Edition, 2010, 47(9), 1766.
18 Liu F, Shi R, Wang Z, et al. Angewandte Chemie International Edition, 2019, 58(34), 11868.
19 Zhou H, Pan J Y, Ding L, et al. International Journal of Hydrogen Energy, 2014, 39(29), 16293.
20 Zong X, Yan H, Wu G, et al. Journal of the American Chemical Society, 2008, 130(23), 7176.
21 Min S X, Lyu G X. Acta Physico-Chimica Sinica, 2011, 27(9), 2178.
22 Sabatini R P, Mccormick T M, Lazarides T, et al. Journal of Physical Chemistry Letters, 2011, 2(3), 223.
23 Puangpetch T, Sommakettarin P, Chavadej S, et al. International Journal of Hydrogen Energy, 2010, 35(22), 12428.
24 Fang W J, Shangguan W F. Industrial Catalysis, 2016, 24(12), 1(in Chinese).
房文健, 上官文峰. 工业催化, 2016, 24(12), 1.
25 Liu X, Li Y X, Peng S Q, et al. Acta Physico-Chimica Sinica, 2015, 31(4), 612(in Chinese).
刘兴, 李越湘, 彭绍琴, 等. 物理化学学报, 2015, 31(4), 612.
26 Han Z, Eisenberg R. Accounts of Chemical Research, 2014, 47(8), 2537.
27 Khnayzer R S, Mccusker C E, Olaiya B S, et al. Journal of the American Chemical Society, 2013, 135(38), 14068.
28 Luo Y, Shi Y P, Yao G P, et al. Chinese Journal of Inorganic Chemistry, 2012, 28(6), 1139(in Chinese).
罗云, 史永平, 姚桂平, 等. 无机化学学报, 2012, 28(6), 1139.
29 Zhu L, Yue Q D, Jiang D C, et al. Chinese Journal of Catalysis, 2018, 39(11), 1753 (in Chinese).
祝亮, 岳秋地, 江道传, 等. 催化学报, 2018, 39(11), 1753.
30 Li X, Wang M, Zheng D, et al. Energy & Environmental Science, 2012, 5, 8220.
31 Adam D, Bösche L, Castaneda-Losada L, et al. Chemsuschem, 2017, 10(5), 894.
32 Jiang Y S, Li T J. Photochemistry, Chemical Industrial Press, China, 2005(in Chinese).
姜月顺, 李铁津. 光化学, 化学工业出版社, 2005.
33 Zhang J C, Wang D Y. Modern photochemistry, Chemical Industrial Press, China, 2006(in Chinese).
张建成, 王夺元. 现代光化学, 化学工业出版社, 2006.
34 Fan M G. Molecular photochemistry and photofunctional materials science, Science Press, China, 2009(in Chinese).
樊美公. 分子光化学与光功能材料科学, 科学出版社, 2009.
35 Jiang Y S, Yang W S. Electronic processes in chemistry, Science Press, China, 2004(in Chinese).
姜月顺, 杨文胜. 化学中的电子过程, 科学出版社, 2004.
36 Dexter D L J. Journal of Chemical Physics, 1953, 21(5), 836.
37 Barnes W L, Andrew P. Nature, 1999, 400(6744), 505.
38 Marcus R A. The Journal of Chemical Physics, 1956, 24(5), 9668.
39 Rehm D, Weller A. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1969, 73(9), 834.
40 Fihri A, Artero V, Pereira A, et al. Dalton Transactions, 2008, 41, 5567.
41 Krasna A. Photochemistry and Photobiology, 1979, 29, 267.
42 Krasna A. Photochemistry and Photobiology, 1980, 31, 75.
43 Kotani H, Ohkubo K, Takai Y, et al. Journal of Physical Chemistry B, 2006, 110(47), 24047.
44 Fukuzumi S. Bioinspired European Journal of Inorganic Chemistry, 2008, 2008(9), 1351.
45 Kotani H, Ono T, Ohkubo K, et al. Physical Chemistry Chemical Physics, 2007, 9(12), 1487.
46 Gong L, Wang J, Li H, et al. Catalysis Communications, 2011, 12(12), 1099.
47 Gueret R, Poulard L, Oshinowo M, et al. ACS Catalysis, 2018, 8 (5), 3792.
48 Shao C J, Xia Q D, Qin C, et al. The Journal of Physical Chemistry C, 2020, 124(7), 4050.
49 Shimidzu T, Iyoda T, Koide Y. Journal of the American Chemical Society, 1985, 107(1), 35.
50 Bi Z C, Tian X D. Chinese Science Bulletin, 1985(10), 89(in Chinese).
毕只初, 田心棣. 科学通报, 1985(10), 89.
51 Hu X Z, Zheng H Q, Rao H, et al. Journal of the Energy Institute, 2015, 88(4), 359,
52 Zhang X, Jin Z, Li Y, et al. Journal of Physical Chemistry C, 2009, 113(6), 2630.
53 Li Q Y, Jin Z L, Peng Z G, et al. Journal of Physical Chemistry C, 2007, 111(23), 8237.
54 Zhang X, Jin Z, Li Y, et al. Journal of Power Sources, 2007, 166(1), 74.
55 Lazarides T, Mccormick T, Du P, et al. Journal of the American Chemical Society, 2009, 131(26), 9192.
56 Zhang W, Hong J, Zheng J, et al. Journal of the American Chemical Society, 2011, 133(51), 20680.
57 Mccormick T M, Calitree B D, Orchard A, et al. Journal of the American Chemical Society, 2010, 132(44), 15480.
58 Mclaughlin M P, Mccormick T M, Eisenberg R, et al. Chemical Communications, 2011, 47(28), 7989.
59 Han Z, Mcnamara W R, Eum M S, et al. Angewandte Chemie International Edition, 2012, 124(7), 1699.
60 Das A, Han Z, Brennessel W W, et al. ACS Catalysis, 2015, 5(4), 2255.
61 Sabatini R P, Eckenhoff W T, Orchard A, et al. Journal of the American Chemical Society, 2014, 136(21), 7740.
62 Luo G G, Li X C, Wang J H. Chemistryselect, 2016, 1(3), 425.
63 Zhao Y, Wang Y, Wu Q, et al. Chinese Journal of Catalysis, 2018, 39(3), 517.
64 Zhang P, Wang M, Dong J, et al. The Journal of Physical Chemistry C, 2010, 114(37), 15868.
65 Dong J, Wang M, Zhang P, et al. Journal of Physical Chemistry C, 2011, 115(30), 15089.
66 Kaur P, Singh K. Journal of Materials Chemistry C, 2019, 7, 11361.
67 Ooyama Y, Hagiwara Y, Mizumo T, et al. New Journal of Chemistry, 2013, 37(8), 2479.
68 Shah M F, Mirloup A, Chowdhury T H, et al. Sustainable Energy & Fuels, 2019, 3, 2983.
69 Shah M F, Mirloup A, Chowdhury T H, et al. Sustainable Energy & Fuels, 2020, 4, 1908.
70 Li X C. Construction and performance of organic photosensitizer-cobalt molecular catalyst system for hydrogen production by artificial light synthesis. Master's Thesis, Huaqiao University, China, 2016 (in Chinese).
李晓聪. 有机光敏剂-钴分子催化剂人工光合成产氢体系的构建与性能研究. 硕士学位论文, 华侨大学, 2016.
71 Bartelmess J, Francis A J, El Roz K A, et al. Inorganic Chemistry, 2014, 53(9), 4527.
72 Manton J C, Long C, Vos J G, et al. Physical Chemistry Chemical Physics, 2014, 16(11), 5229.
73 Dura L, Ahrens J, Pohl M M, et al. Chemistry-A European Journal, 2015, 21(39), 13549.
74 Sabatini R P, Lindley B M, Mccormick T M, et al. Journal of Physical Chemistry B, 2016, 120(3), 527.
75 Luo G G, Lu H, Zhang X L, et al. Physical Chemistry Chemical Physics, 2015, 17(15), 9716.
76 Li X C , Luo G G, Fang K, et al. Scientia Sinica Chimica, 2015, 45(8), 843(in Chinese).
李晓聪, 骆耿耿, 方凯, 等. 中国科学, 2015, 45(8), 843.
77 Luo G G, Fang K, Wu J H. Chemical Communications, 2015, 51(62), 12361.
78 Eckenhoff W T, Eisenberg R. Dalton Transactions, 2012, 41(42), 13004.
79 Mir A Q, Dolui D, Khandelwal S, et al. Journal of Visualized Experiments, 2019, 152, 60231.
80 Gao S, Huang S, Duan Q, et al. International Journal of Hydrogen Energy, 2014, 39(20), 10434.
81 He Y. Application of organic photosensitizer in homogeneous photoinduced hydrogen production system. Master's Thesis, Dalian University of Technology, China, 2013(in Chinese).
何宇. 有机光敏剂在均相光致产氢体系中的应用. 硕士学位论文, 大连理工大学, 2013.
82 Dong R, Chen K K, Wang P, et al. Dyes and Pigments, 2019, 166, 84.
83 Biswal B P, Vignolo-Gonzalez H A, Banerjee T, et al. Journal of the American Chemical Society, 2019, 141(28), 11082.
84 Luo W, Liang Y C, Hu Z C, et al. Chemical Journal of Chinese Universities, 2020, 41(3), 456(in Chinese).
罗威, 梁佑才, 胡志诚, 等. 高等学校化学学报, 2020, 41(3), 456.
85 Yong W W, Lu H, Li H, et al. ACS Applied Materids & Interfaces, 2018, 10(13), 10828.
86 Wang Y, Vogel A, Sachs M, et al. Nature Energy, 2020, 5(8), 633.
87 Liu Y, Zhang F, Wu P, et al. Inorganic Chemistry, 2019, 58(1), 924.
88 Wang Z Y, Rao H, Deng M F, et al. Physical Chemistry Chemical Physics, 2013, 15(39). 16665.
89 Zhang Y J, Guo L J, Yan W, et al. Acta Energiae Solaris Sinica, 2006, 27(11), 1113(in Chinese).
张耀君, 郭烈锦, 延卫, 等. 太阳能学报, 2006, 27(11), 1113.
90 Zhong W S, Zhang Q Y. Unviersity Chemistry, 1988(2), 39 (in Chinese).
钟文士, 张启衍. 大学化学, 1988(2), 39.
91 Fu X, Long J, Wang X, et al. International Journal of Hydrogen Energy, 2008, 33(22), 6484h.
92 Bai Y, Wilbraham L, Slater B J, et al. Journal of the American Chemical Society, 2019, 141(22), 9063.
93 Masood H, Toe C Y, Teoh W Y, et al. ACS Catalysis, 2019, 141(22), 9063.
[1] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[2] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[3] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[4] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[5] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[6] 刘毅, 冯紫娟, 贾雯, 吴雪, 郑旭煦, 袁小亚. 一步溶剂热法合成Bi2S3/BiOBr多级异质结及其增强可见光光催化去除RhB的研究[J]. 材料导报, 2022, 36(24): 21030140-8.
[7] 黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
[8] 蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 22030040-7.
[9] 陈龙, 刘兆利, 杨旭东, 张偌涵, 孙玮良, 刘文. 纳米材料光催化灭活新型冠状病毒SARS-CoV-2研究进展与启示[J]. 材料导报, 2022, 36(20): 22100084-12.
[10] 张慧敏, 单展, 王宏, 张晓艳. 球状钼酸钙在可见光下选择性光催化降解废水中的抗生素[J]. 材料导报, 2022, 36(19): 22010249-7.
[11] 李兵, 黄有鹏, 吴福礼, 杨本宏. Ti3C2Tx/Bi2WO6复合材料的制备及其光催化性能[J]. 材料导报, 2022, 36(17): 21010021-4.
[12] 县涛, 高宇姝, 孙小锋, 邸丽景, 马俊, 周永杰. 修饰AuAg合金纳米颗粒对BiOBr纳米片光催化降解和还原性能的提高[J]. 材料导报, 2022, 36(13): 21010273-8.
[13] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[14] 李园园, 蒲红争, 曾寒露, 蒋明珠, 任彦荣, 公祥南. Sn空位增强Li2SnO3光催化降解四环素的研究[J]. 材料导报, 2022, 36(10): 21030159-6.
[15] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed