Sn Vacancy of Li2SnO3 Enhancing the Photocatalytic Degradation of Tetracycline
LI Yuanyuan1,*, PU Hongzheng1, ZENG Hanlu1, JIANG Mingzhu1, REN Yanrong1, GONG Xiangnan2,*
1 College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China 2 Analytical and Testing Center of Chongqing University, Chongqing University, Chongqing 401331, China
Abstract: Vacancy defect plays an important role in the research of photocatalysis. In this work, vacancy samples Li2Sn1-xO3(x=0, 0.1, 0.2, 0.3, 0.4) were prepared by solid state method and characterized by powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). Tetracycline(TC) was applied as a target pollutant to evaluate the photocatalytic performance. The results show that Li2Sn1-xO3(x=0.1, 0.2, 0.3, 0.4) exhibit an excellent photocatalytic degradation, compared with parent Li2SnO3, and with the increase content of Sn vacancies, the photocatalytic efficiency firstly increased and then decreased. Electronic structure calculations and diffuse reflectance optical spectroscopy suggest that the enhanced photocatalytic performance might originate from lowered the valence band maximum caused by Sn vacancy, which enhances the photocatalytic oxidative capability. Among them, the defect sample Li2Sn0.7O3 embraces the best photocatalytic performance. The photodegradation efficiency could reach approximately 71% within 50 min under UV irradiation. Besides, the photocatalytic behavior was successfully described by a pseudo first-order kinetics model, and the obtained rate constant was 0.026 83 min-1. Further, free radical capture experiments indicated that photo-excited holes are the dominate radicals in the degradation of TC solution. Finally, the efficiency of photocatalytic performance slightly decreased after 2 cycling runs.
作者简介: 李园园,重庆第二师范学院副教授。2016年12月获重庆大学博士学位。主要从事催化剂的设计、合成及应用,计算化学等方向的研究。在国际顶级期刊Journal of the American Chemical Society, Chemical Society Reviews, Inorganic Chemistry Frontiers, Inorganic Chemistry, Chinese Chemical Letters等发表学术论文30余篇,申请发明专利13项,其中5项发明专利已授权,1项实用新型专利已授权。 公祥南,重庆大学分析测试中心光谱分析室主任。2011年6月获温州大学硕士学位。长期开展低维结构功能材料的拉曼光谱学研究,包括原位变温拉曼结合热学输运性质的研究以及角分辨极化拉曼定向晶体的研究。在国际高水平期刊Appl. Surf. Sci., Sci. China Mater., Vib. Spectrosc., Spectrochim. Acta Part A等光谱类专业期刊发表学术论文30余篇;申请专利2项(授权1项);荣获2020年中国分析测试协会科学技术奖一等奖(3/10)。
引用本文:
李园园, 蒲红争, 曾寒露, 蒋明珠, 任彦荣, 公祥南. Sn空位增强Li2SnO3光催化降解四环素的研究[J]. 材料导报, 2022, 36(10): 21030159-6.
LI Yuanyuan, PU Hongzheng, ZENG Hanlu, JIANG Mingzhu, REN Yanrong, GONG Xiangnan. Sn Vacancy of Li2SnO3 Enhancing the Photocatalytic Degradation of Tetracycline. Materials Reports, 2022, 36(10): 21030159-6.
1 Chen C C, Ma W H, Zhao J C. Chemical Society Reviews, 2010, 39, 4206. 2 Hong Y, Li C, Yin B, et al. Chemical Engineering Journal, 2018, 338, 137. 3 Li P S, Guo M, Wang Q, et al. Applied Catalysis B: Environmental, 2019, 259, 118107. 4 Cheng Z L, Quan X J, Xiang J X, et al. Journal of Environmental Sciences, 2012, 24, 1317. 5 Zhou J, An X Q,Tang Q W, et al. Applied Catalysis B: Environmental, 2020, 277, 119221. 6 Wu H, Xu X Y, Shi L, et al. Water Research, 2019, 167, 115110. 7 Xie Y B , Xuan Y, Liang Y, et al. Journal of Yunnan University, 2018, 40, 521. 8 Qi k Z, Lv W X, Khan I, et al. Chinese Journal of Catalysis, 2020,41, 114. 9 Ye X, Chen Y, Wu Y, et al. Applied Catalysis B: Environmental, 2019, 242, 302. 10 Li P K,Wang Q. Journal of Liaocheng University(Natural Science Edition), 2019, 32(3), 46(in Chinese). 李沛珅, 王强.聊城大学学报(自然科学版), 2019, 32(3), 46. 11 Liu C, Ding B, Yang X F, et al. Materials Reports, 2020, 34(Z2), 78 (in Chinese). 刘畅, 丁博, 杨贤峰, 等.材料导报, 2020, 34(Z2), 78. 12 Xiong J, Di J, Xia J X, et al. Advanced Functional Materials, 2018, 28, 1801983. 13 Qi K Z, Wang Y, Fu J Q, et al. Chemical Journal of Chinese Universities, 2014,12, 2523. 14 Gong Y, Wang L L, Xu Y Q, et al. Materials Reports. 2020, 34(Z2), 37 (in Chinese). 巩云, 王龙龙, 徐亚琪, 等. 材料导报, 2020, 34(Z2), 37. 15 Hirakawa H, Hashimoto M, Shiraishi Y, et al. Journal of the American Chemical Society, 2017, 139, 10929. 16 Yu F C, Nan D M, Song T Y, et al. Materials Reports B: Research Papers. 2020, 34(4), 8003 (in Chinese). 于富成, 南冬梅, 宋天云, 等.材料导报:研究篇, 2020, 34(4), 8003. 17 Zhang N, Li L G, Shao Q, et al. ACS Applied Energy Materials, 2019, 2, 8394. 18 Qi K Z, Liu S Y, Qiu M, et al. Chinese Journal of Catalysis, 2018,39, 867. 19 Liu H J, Chen P, Yuan X Y, et al. Chinese Journal of Catalysis, 2019, 40, 620. 20 Dong X A, Cui W, Wang H,et al. Chinese Science Bulletin, 2019, 64, 669. 21 Chen P, Zhou Y, Dong F. Acta Physico-Chimica Sinica, 2021, 37, 2010010. 22 Varghese A, Ghosh P, Datta S. The Journal of Chemical Physics, 2014, 118, 21604. 23 Hao X, Zhou J, Cu Z, et al. Applied Catalysis B: Environmental, 2018, 229, 41. 24 Cui W, Chen L C, Li J Y, et al. Applied Catalysis B: Environmental, 2019, 253, 293. 25 Hao X Q, Cui Z W, Zhou J, et al. Nano Energy, 2018, 52, 105. 26 He Y Q, Rao H, Song K P, et al. Advanced Functional Materials, 2019, 29, 1905153. 27 Han H J, Yang Y, Liu J F, et al. ACS Applied Energy Materials, 2020, 3, 11275. 28 Zeng D B, Yu C L, Fan Q Z, et al. Chemical Engineering Journal, 2020, 391, 123607. 29 Yu C L, Zeng D B, Fan Q Z, et al. Environmental Science Nano, 2020, 7, 286. 30 Zhang Y, Huang B L, Qi S, et al. Nano Letters, 2019, 19, 6894. 31 Shein I R, Denisova T A, Baklanova Y V, et al. The Journal of Chemical Physics, 2011, 52, 1043. 32 Chen S, Hu Y, Meng S, et al. Applied Catalysis B: Environmental, 2014, 150, 564. 33 Wang Q F, Huang Y, Miao J, et al. Applied Surface Science, 2012, 258, 9896. 34 Li Y Y, Wu M J, Yang D F, et al. Catalysts, 2019, 9, 712. 35 Blochl P E. Physical Review B, 1994, 50, 17953. 36 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77, 3865. 37 Monkhorst H J, Pack J D. Physical Review B, 1976, 13, 5188. 38 Xie Z J, Feng Y P, Wang F L, et al. Applied Catalysis B: Environmental, 2018, 229, 96.