Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 21030159-6    https://doi.org/10.11896/cldb.21030159
  无机非金属及其复合材料 |
Sn空位增强Li2SnO3光催化降解四环素的研究
李园园1,*, 蒲红争1, 曾寒露1, 蒋明珠1, 任彦荣1, 公祥南2,*
1 重庆第二师范学院生物与化学工程学院, 重庆 400067
2 重庆大学分析测试中心, 重庆 401331
Sn Vacancy of Li2SnO3 Enhancing the Photocatalytic Degradation of Tetracycline
LI Yuanyuan1,*, PU Hongzheng1, ZENG Hanlu1, JIANG Mingzhu1, REN Yanrong1, GONG Xiangnan2,*
1 College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
2 Analytical and Testing Center of Chongqing University, Chongqing University, Chongqing 401331, China
下载:  全 文 ( PDF ) ( 6094KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 缺陷在光催化的研究中发挥着重要作用。本工作通过固相烧结法制备了Sn空位光催化样品Li2Sn1-xO3(x=0,0.1,0.2,0.3,0.4),并采用粉末X射线多晶衍射技术(PXRD)及扫描电镜(SEM)对其物相结构和表面形貌进行了表征。以盐酸四环素(TC)作为目标污染物探究了其光催化性能。研究结果表明,相比于母体Li2SnO3,Li2Sn1-xO3(x=0.1,0.2,0.3,0.4)具有优异的光催化降解性能,且随着Sn空位浓度的增大,Li2Sn1-xO3降解TC的能力呈现先增大后减小的趋势。这可能是因为Sn空位降低了Li2SnO3的价带顶,从而增强了其氧化光催化降解能力。其中,缺陷样品Li2Sn0.7O3具有最优的光催化效果。在紫外灯辐射50 min内,其降解率可达71%。光催化动力学分析表明其光催化降解满足一级动力学模型,速率常数为0.026 83 min-1。自由基捕获实验表明,空穴(h+)是TC降解过程中的主要活性自由基。此外,在两次循环试验中,Li2Sn0.7O3的催化活性略有降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李园园
蒲红争
曾寒露
蒋明珠
任彦荣
公祥南
关键词:  Sn空位  Li2SnO3  光催化  四环素    
Abstract: Vacancy defect plays an important role in the research of photocatalysis. In this work, vacancy samples Li2Sn1-xO3(x=0, 0.1, 0.2, 0.3, 0.4) were prepared by solid state method and characterized by powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). Tetracycline(TC) was applied as a target pollutant to evaluate the photocatalytic performance. The results show that Li2Sn1-xO3(x=0.1, 0.2, 0.3, 0.4) exhibit an excellent photocatalytic degradation, compared with parent Li2SnO3, and with the increase content of Sn vacancies, the photocatalytic efficiency firstly increased and then decreased. Electronic structure calculations and diffuse reflectance optical spectroscopy suggest that the enhanced photocatalytic performance might originate from lowered the valence band maximum caused by Sn vacancy, which enhances the photocatalytic oxidative capability. Among them, the defect sample Li2Sn0.7O3 embraces the best photocatalytic performance. The photodegradation efficiency could reach approximately 71% within 50 min under UV irradiation. Besides, the photocatalytic behavior was successfully described by a pseudo first-order kinetics model, and the obtained rate constant was 0.026 83 min-1. Further, free radical capture experiments indicated that photo-excited holes are the dominate radicals in the degradation of TC solution. Finally, the efficiency of photocatalytic performance slightly decreased after 2 cycling runs.
Key words:  Sn vacancy    Li2SnO3    photocatalysis    tetracycline
发布日期:  2022-05-24
ZTFLH:  O611  
基金资助: 重庆英才创新创业示范团队(CQYC201903178);重庆市自然科学基金面上项目(cstc2021jcyj-msxmX1181);重庆市教育委员会科学技术研究项目(KJQN202001613);重庆第二师范学院国家自科基金校级培育项目(18GZKP01); 重庆第二师范学院大学生科研项目(KY20200138;KY20210133);大学生创新创业训练计划国家级项目(202114388002)
通讯作者:  liyy@cque.edu.cn;xiangnan.gong@cqu.edu.cn   
作者简介:  李园园,重庆第二师范学院副教授。2016年12月获重庆大学博士学位。主要从事催化剂的设计、合成及应用,计算化学等方向的研究。在国际顶级期刊Journal of the American Chemical Society, Chemical Society Reviews, Inorganic Chemistry Frontiers, Inorganic Chemistry, Chinese Chemical Letters等发表学术论文30余篇,申请发明专利13项,其中5项发明专利已授权,1项实用新型专利已授权。
公祥南,重庆大学分析测试中心光谱分析室主任。2011年6月获温州大学硕士学位。长期开展低维结构功能材料的拉曼光谱学研究,包括原位变温拉曼结合热学输运性质的研究以及角分辨极化拉曼定向晶体的研究。在国际高水平期刊Appl. Surf. Sci., Sci. China Mater., Vib. Spectrosc., Spectrochim. Acta Part A等光谱类专业期刊发表学术论文30余篇;申请专利2项(授权1项);荣获2020年中国分析测试协会科学技术奖一等奖(3/10)。
引用本文:    
李园园, 蒲红争, 曾寒露, 蒋明珠, 任彦荣, 公祥南. Sn空位增强Li2SnO3光催化降解四环素的研究[J]. 材料导报, 2022, 36(10): 21030159-6.
LI Yuanyuan, PU Hongzheng, ZENG Hanlu, JIANG Mingzhu, REN Yanrong, GONG Xiangnan. Sn Vacancy of Li2SnO3 Enhancing the Photocatalytic Degradation of Tetracycline. Materials Reports, 2022, 36(10): 21030159-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030159  或          http://www.mater-rep.com/CN/Y2022/V36/I10/21030159
1 Chen C C, Ma W H, Zhao J C. Chemical Society Reviews, 2010, 39, 4206.
2 Hong Y, Li C, Yin B, et al. Chemical Engineering Journal, 2018, 338, 137.
3 Li P S, Guo M, Wang Q, et al. Applied Catalysis B: Environmental, 2019, 259, 118107.
4 Cheng Z L, Quan X J, Xiang J X, et al. Journal of Environmental Sciences, 2012, 24, 1317.
5 Zhou J, An X Q,Tang Q W, et al. Applied Catalysis B: Environmental, 2020, 277, 119221.
6 Wu H, Xu X Y, Shi L, et al. Water Research, 2019, 167, 115110.
7 Xie Y B , Xuan Y, Liang Y, et al. Journal of Yunnan University, 2018, 40, 521.
8 Qi k Z, Lv W X, Khan I, et al. Chinese Journal of Catalysis, 2020,41, 114.
9 Ye X, Chen Y, Wu Y, et al. Applied Catalysis B: Environmental, 2019, 242, 302.
10 Li P K,Wang Q. Journal of Liaocheng University(Natural Science Edition), 2019, 32(3), 46(in Chinese).
李沛珅, 王强.聊城大学学报(自然科学版), 2019, 32(3), 46.
11 Liu C, Ding B, Yang X F, et al. Materials Reports, 2020, 34(Z2), 78 (in Chinese).
刘畅, 丁博, 杨贤峰, 等.材料导报, 2020, 34(Z2), 78.
12 Xiong J, Di J, Xia J X, et al. Advanced Functional Materials, 2018, 28, 1801983.
13 Qi K Z, Wang Y, Fu J Q, et al. Chemical Journal of Chinese Universities, 2014,12, 2523.
14 Gong Y, Wang L L, Xu Y Q, et al. Materials Reports. 2020, 34(Z2), 37 (in Chinese).
巩云, 王龙龙, 徐亚琪, 等. 材料导报, 2020, 34(Z2), 37.
15 Hirakawa H, Hashimoto M, Shiraishi Y, et al. Journal of the American Chemical Society, 2017, 139, 10929.
16 Yu F C, Nan D M, Song T Y, et al. Materials Reports B: Research Papers. 2020, 34(4), 8003 (in Chinese).
于富成, 南冬梅, 宋天云, 等.材料导报:研究篇, 2020, 34(4), 8003.
17 Zhang N, Li L G, Shao Q, et al. ACS Applied Energy Materials, 2019, 2, 8394.
18 Qi K Z, Liu S Y, Qiu M, et al. Chinese Journal of Catalysis, 2018,39, 867.
19 Liu H J, Chen P, Yuan X Y, et al. Chinese Journal of Catalysis, 2019, 40, 620.
20 Dong X A, Cui W, Wang H,et al. Chinese Science Bulletin, 2019, 64, 669.
21 Chen P, Zhou Y, Dong F. Acta Physico-Chimica Sinica, 2021, 37, 2010010.
22 Varghese A, Ghosh P, Datta S. The Journal of Chemical Physics, 2014, 118, 21604.
23 Hao X, Zhou J, Cu Z, et al. Applied Catalysis B: Environmental, 2018, 229, 41.
24 Cui W, Chen L C, Li J Y, et al. Applied Catalysis B: Environmental, 2019, 253, 293.
25 Hao X Q, Cui Z W, Zhou J, et al. Nano Energy, 2018, 52, 105.
26 He Y Q, Rao H, Song K P, et al. Advanced Functional Materials, 2019, 29, 1905153.
27 Han H J, Yang Y, Liu J F, et al. ACS Applied Energy Materials, 2020, 3, 11275.
28 Zeng D B, Yu C L, Fan Q Z, et al. Chemical Engineering Journal, 2020, 391, 123607.
29 Yu C L, Zeng D B, Fan Q Z, et al. Environmental Science Nano, 2020, 7, 286.
30 Zhang Y, Huang B L, Qi S, et al. Nano Letters, 2019, 19, 6894.
31 Shein I R, Denisova T A, Baklanova Y V, et al. The Journal of Chemical Physics, 2011, 52, 1043.
32 Chen S, Hu Y, Meng S, et al. Applied Catalysis B: Environmental, 2014, 150, 564.
33 Wang Q F, Huang Y, Miao J, et al. Applied Surface Science, 2012, 258, 9896.
34 Li Y Y, Wu M J, Yang D F, et al. Catalysts, 2019, 9, 712.
35 Blochl P E. Physical Review B, 1994, 50, 17953.
36 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77, 3865.
37 Monkhorst H J, Pack J D. Physical Review B, 1976, 13, 5188.
38 Xie Z J, Feng Y P, Wang F L, et al. Applied Catalysis B: Environmental, 2018, 229, 96.
[1] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[2] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[3] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[4] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[5] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[6] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[7] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[8] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[9] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[10] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[11] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[12] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[13] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[14] 曾鹂, 彭同江, 孙红娟, 李瑶, 杨敬杰. Mn掺杂LaNi1-xMnxO3的合成及在可见光下的光催化活性[J]. 材料导报, 2021, 35(24): 24018-24025.
[15] 贾雯, 袁小亚, 冯紫娟, 吴雪, 彭冬, 刘毅. 一锅法合成缺陷型Bi/BiOBr纳米复合材料及其可见光驱动去除水体六价铬离子和有机染料的研究[J]. 材料导报, 2021, 35(24): 24032-24040.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed