Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 22100084-12    https://doi.org/10.11896/cldb.22100084
  新型环境功能材料 |
纳米材料光催化灭活新型冠状病毒SARS-CoV-2研究进展与启示
陈龙1, 刘兆利1, 杨旭东1, 张偌涵1, 孙玮良2, 刘文1,*
1 北京大学环境科学与工程学院,国家环境保护河流全物质通量重点实验室,水沙科学教育部重点实验室,北京 100871
2 路易斯安那州立大学土木与环境工程学院,美国 巴吞鲁日 70803
Research Progress and Implication on Photocatalytic Inactivation of SARS-CoV-2 by Nanomaterials
CHEN Long1, LIU Zhaoli1, YANG Xudong1, ZHANG Ruohan1, SUN Weiliang2, LIU Wen1,*
1 State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, the Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
2 Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge 70803, LA, USA
下载:  全 文 ( PDF ) ( 5737KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由新型冠状病毒(严重急性呼吸综合症冠状病毒2型,SARS-CoV-2)引发的新冠肺炎(COVID-19)疫情全球蔓延,给人类健康和社会经济发展造成了巨大影响,因此,病毒的灭活是目前备受关注的环境公共卫生安全问题。病毒不会在宿主体外立即失活的特点扩展了其传播途径,而水体是SARS-CoV-2传播的重要媒介,尤其是城镇生活污水和医院污水。表面功能蛋白和核酸RNA是SARS-CoV-2的主要组成成分,可被活性物种如氧化性的自由基攻击而破坏,从而实现病毒的灭活。以纳米材料为核心的光催化技术可在光激发后高效产生活性氧物种,能够破坏病毒的结构蛋白、损坏病毒的RNA并影响其发育或阻断其与宿主的结合。本文在分析SARS-CoV-2的环境分布和传播特征的基础上,结合纳米材料光催化技术的核心机理,探讨了纳米光催化技术杀灭新冠病毒的机制,并全面综述了目前纳米材料应用于光催化灭活新冠病毒的研究进展,总结了可应用于该领域的潜在纳米光催化材料。本综述可为开发适用于新冠病毒灭活的光催化纳米材料提供参考,对新冠疫情防控中公共安全保障,尤其是切断病毒环境传播途径具有重要的理论价值和现实意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈龙
刘兆利
杨旭东
张偌涵
孙玮良
刘文
关键词:  纳米材料  光催化  SARS-CoV-2  灭活  新冠肺炎    
Abstract: The global pandemic of COVID-19 caused by the novel coronavirus (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2) has a huge impact on human health and socioeconomic development. Thus, inactivation of SARS-CoV-2 is a big concern for environmental public health and sanitary security. The virus will not be inactivated immediately after leave the host, leading to extended transmission routes. Water is an important medium for SARS-CoV-2 transmission, especially the urban domestic sewage and medical wastewater. The surface functional protein and nucleic acid (RNA) are the main components of SARS-CoV-2, which can be attacked and destroyed by reactive species such as oxidative radicals, leading to inactivation of virus. The photocatalysis technology using nanomaterials can efficiently produce reactive oxygen species (ROS) under light irradiation. Therefore, by the attack of ROS, the structural protein of virus can be destroyed, the RNA can be damaged to inhibit its biological development, or its binding process to the host can be blocked. In this study, the environmental distribution and transmission characteristics of SARS-CoV-2 are presented firstly. Then, the mechanisms of photocatalysis by using nanomaterials and its application on SARS-CoV-2 inactivation are illustrated. The research progress on inactivation of SARS-CoV-2 through nanomaterial photocatalysis is comprehensively summarized, and the promising photocatalysts that can be used for SARS-CoV-2 inactivation are also proposed. This study can provide guidance for the development of photocatalytic nanomaterials for the inactivation of SARS-CoV-2, and has great significance for epidemic prevention and control, especially for cutting off the transmission route of virus in water.
Key words:  nanomaterials    photocatalysis    SARS-CoV-2    inactivation    COVID-19
发布日期:  2022-10-26
ZTFLH:  X506  
  O643  
  TB34  
基金资助: 国家重点研发计划青年科学家项目(2021YFA1202500);国家自然科学基金(52270053;52200083);北京市科技新星计划(Z191100001119054);中央高校基本科研业务费
通讯作者:  *wen.liu@pku.edu.cn   
作者简介:  陈龙,2019年7月于北京大学获得工学学士学位。现为北京大学环境科学与工程学院博士研究生,在刘文研究员的指导下进行研究。目前主要研究领域为纳米材料高级氧化技术去除水体中有机污染物和微生物,目前已经在Water Research、Chemical Engineering Journal等期刊发表论文15篇。
刘文,北京大学环境科学与工程学院研究员、博士研究生导师。国家级青年人才入选者,国家重点研发计划项目(青年)首席科学家,北京大学环境纳米实验室主任。2009年毕业于南开大学,获环境工程学士学位;2014年毕业于北京大学,获环境工程博士学位;2014年8月至2017年9月先后在美国奥本大学和佐治亚理工学院从事博士后研究。目前主要从事环境纳米技术、水污染控制工程等方面的研究工作。在国内外期刊上发表学术论文200余篇,其中SCI收录180余篇,包括以第一/通信作者在Journal of the American Chemical Society、Environmental Science & Technology、Water Research等期刊上发表的论文。入选美国斯坦福大学发布的2020—2022年世界排名前2%科学家排行榜 “年度影响力”榜单,以及全球学者库评出的2021—2022年“全球顶尖前10万科学家名单”。
引用本文:    
陈龙, 刘兆利, 杨旭东, 张偌涵, 孙玮良, 刘文. 纳米材料光催化灭活新型冠状病毒SARS-CoV-2研究进展与启示[J]. 材料导报, 2022, 36(20): 22100084-12.
CHEN Long, LIU Zhaoli, YANG Xudong, ZHANG Ruohan, SUN Weiliang, LIU Wen. Research Progress and Implication on Photocatalytic Inactivation of SARS-CoV-2 by Nanomaterials. Materials Reports, 2022, 36(20): 22100084-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100084  或          http://www.mater-rep.com/CN/Y2022/V36/I20/22100084
1 Johns Hopkins University & Medicine Coronavirus Resource Center.[2022-10-10].https:∥coronavirus.jhu.edu.
2 Li C X, Noreen S, Zhang L X, et al. Biomedicine & Pharmacotherapy, 2022, 146, 112550.
3 Bouadma L, Lescure F X, Lucet J C, et al. Intensive Care Medicine, 2020, 46(4), 579.
4 Singh J, Pandit P, McArthur A G, et al. Virology Journal, 2021, 18(1), 166.
5 Zhou P, Yang X L, Wang X G, et al. Nature, 2020, 579(7798), 270.
6 Patial S, Kumar A, Raizada P, et al. Journal of Environmental Chemical Engineering, 2022, 10(3), 107527.
7 Yao H, Song Y, Chen Y, et al. Cell, 2020, 183(3), 730.
8 Tizaoui C. Ozone: Science & Engineering, 2020, 42(5), 378.
9 Zahmatkesh S, Sillanpaa M, Rezakhani Y, et al. Journal of Hazardous Materials Advances, 2022, 7, 100140.
10 Mistry P, Barmania F, Mellet J, et al. Frontiers in Immunology, 2021, 12, 809244.
11 Mohapatra R K, Tiwari R, Sarangi A K, et al. Journal of Medical Virology, 2022, 94(5), 1761.
12 Grint D J, Wing K, Williamson E, et al.Eurosurveillance,2021,26(11),2100256.
13 Tegally H, Wilkinson E, Althaus C L, et al. medRxiv, 2021, preprint. DOI: 10.1101/2021.09.23.21264018.
14 del Rio C, Omer S B, Malani P N. Jama, 2022, 327(4), 319.
15 Tareq A, Emran T B, Dhama K, et al. Human Vaccines & Immunotherapeutics, 2021, 17(11), 4126.
16 Ito K, Piantham C, Nishiura H. Journal of Medical Virology, 2022, 94(5), 2265.
17 Wiktorczyk-Kapischke N, Grudlewska-Buda K, Wałecka-Zacharska E, et al. Science of the Total Environment, 2021, 770, 145260.
18 Van Doremalen N, Bushmaker T, Morris D H, et al. New England Journal of Medicine, 2020, 382(16), 1564.
19 Khaiboullina S, Uppal T, Dhabarde N, et al. Viruses, 2021, 13(1),19.
20 Cheung K S, Hung I F, Chan P P, et al. Gastroenterology, 2020, 159(1), 81.
21 Hart O E, Halden R U. Science of the Total Environment, 2020, 730, 138875.
22 Bivins A, Greaves J, Fischer R, et al. Environmental Science & Techno-logy Letters, 2020, 7(12), 937.
23 Shutler J, Zaraska K, Holding T, et al. ACS EST Water, 2021, 1(4), 949.
24 Khorram-Manesh A, Goniewicz K,Burkle F M.Journal of Global Health, 2021, 11, 03016.
25 Zaneti R N, Girardi V, Spilki F R, et al. Science of the Total Environment, 2021, 754, 142163.
26 Li J, Lai S, Gao G F, et al. Nature, 2021, 600(7889), 408.
27 Mohapatra S, Menon N G, Mohapatra G, et al. Science of the Total Environment, 2021, 765, 142746.
28 Wurtzer S, Marechal V, Mouchel J, et al. Eurosurveillance, 2020, 25(50), 2000776.
29 Kumar M, Kuroda K, Patel A K, et al. Science of the Total Environment, 2021, 754, 142329.
30 Randazzo W, Truchado P, Cuevas-Ferrando E, et al. Water Research, 2020, 181, 115942.
31 Martins R B, Castro I A, Pontelli M, et al. Ozone Science & Enginee-ring, 2021, 43(2), 108.
32 Chen F, Ma T, Zhang T, et al. Advanced Materials, 2021, 33(10), 2005256.
33 Edvinsson T. Royal Society Open Science, 2018, 5(9), 180387.
34 Jastrzębska A M, Vasilchenko A S. ACS Sustainable Chemistry & Engineering, 2021, 9(2), 601.
35 Bao D, Upadhyayula S, Larsen J M, et al. Journal of the American Chemical Society, 2014, 136(37), 12966.
36 Fang Z B, Liu T T, Liu J, et al. Journal of the American Chemical Society, 2020, 142(28), 12515.
37 Liu Z, Zhang C, Liu L, et al. Advanced Materials, 2021, 33(48), 2104099.
38 Xia P, Cao S, Zhu B, et al. Angewandte Chemie International Edition, 2020, 59(13), 5218.
39 Marchioro A, Teuscher J, Friedrich D, et al. Nature Photonics, 2014, 8(3), 250.
40 Nosaka Y, Nosaka A Y. Chemical Reviews, 2017, 117(17), 11302.
41 Pan Q, Abdellah M, Cao Y, et al. Nature Communications, 2022, 13(1), 1.
42 Wang X D, Huang Y H, Liao J F, et al. Journal of the American Chemical Society, 2019, 141(34), 13434.
43 Gao W, Addiego C, Wang H, et al. Nature, 2019, 575(7783), 480.
44 Lei Y, Li Y, Lu C, et al. Nature, 2022, 608(7922), 317.
45 Motti S G, Patel J B, Oliver R D J, et al. Nature Communications, 2021, 12(1), 1.
46 Wang L, Zhang J, Zhang Y, et al. Small, 2021, 18(8), 2104561.
47 Wang D, Wu H, Phua S Z F, et al. Nature Communications, 2020, 11(1), 1.
48 Li J, Song S, Meng J, et al. Journal of the American Chemical Society, 2021, 143(37), 15427.
49 Li J, Li Z, Liu X, et al. Nature Communications, 2021, 12(1), 1.
50 Ji H D, Qi J J, Zheng M S, et al. Progress in Chemistry, 2022, 34(1), 207(in Chinese).
冀豪栋, 齐娟娟, 郑茂盛, 等.化学进展, 2022, 34(1), 207.
51 Biasin M, Bianco A, Pareschi G, et al. Scientific Reports, 2021, 11(1), 6260.
52 Sesti-Costa R, Negrão C V Z, Shimizu J F, et al. Photodiagnosis and Photodynamic Therapy, 2022, 39, 103015.
53 Pozo-Antonio J S, Sanmartín P J B. Biofouling, 2018, 34(8), 851.
54 Guo Q, Zhou C, Ma Z, et al. Advanced Materials, 2019, 31(50), 1901997.
55 Noman M T, Ashraf M A, Ali A. Environmental Science and Pollution Research, 2019, 26(4), 3262.
56 Zhang J, Zhou P, Liu J, et al. Physical Chemistry Chemical Physics, 2014, 16(38), 20382.
57 Al-Mamun M R, Kader S, Islam M S, et al. Journal of Environmental Chemical Engineering, 2019, 7(5), 103248.
58 Chen D, Cheng Y, Zhou N, et al. Journal of Cleaner Production, 2020, 268, 121725.
59 Dong H, Zeng G, Tang L, et al. Water Research, 2015, 79, 128.
60 Matsuura R, Lo C W, Wada S, et al. Viruses, 2021, 13(5), 942.
61 Hamza R Z, Gobouri A A, Al-Yasi H M, et al. Coatings, 2021, 11(6), 680.
62 Tong Y, Shi G, Hu G, et al. Chemical Engineering Journal, 2021, 414, 128788.
63 Micochova P, Chadha A, Hesseloj T, et al. Welcome Open Research, DOI: 10.12688/wellcomeopenres.16577.2.
64 Djellabi R, Basilico N, Delbue S, et al. International Journal of Molecular Sciences, 2021, 22(16), 8836.
65 Negrete O, Bradfute S, Larson S R, et al. Photocatalytic material surfaces for SARS-CoV-2 virus inactivation. No. SAND-2020-9861. Sandia National Lab.(SNL-CA), Livermore, CA(United States); Sandia National Lab.(SNL-NM), Albuquerque, NM(United States), 2020.
66 Nakano R, Yamaguchi A, Sunada K, et al. Scientific Reports, 2022, 12(1), 5804.
67 Girish K S, Koteswara R K S R. Applied Surface Science, 2015, 355, 939.
68 Peleyeju M G, Viljoen E L. Journal of Water Process Engineering, 2021, 40, 101930.
69 Liao M, Su L, Deng Y, et al. Journal of Materials Science, 2021, 56(26), 14416.
70 Shandilya P, Sambyal S, Sharma R, et al. Journal of Hazardous Mate-rials, 2022, 428, 128218.
71 Dong P, Hou G, Xi X, et al. Environmental Science: Nano, 2017, 4(3), 539.
72 Girish K S, Koteswara R K S R. Applied Surface Science, 2017, 391, 124.
73 Uema M, Yonemitsu K, Momose Y, et al. BioRxiv, 2020, preprint. DOI: 10.1101/2020.11.01.364364.
74 Ghezzi S, Pagani I, Poli G, et al. Nanotechnology, 2020, 1(3), 109.
75 Matsuura R, Maeda K, Hagiwara K, et al. Pathogens, 2022, 11(8), 922.
76 Ling L, Carletti T, Cheng Z, et al. BioRxiv, 2021, preprint. DOI: 10.1101/2021.03.09.434359.
77 Furukawa H, Cordova K E, O’Keeffe M, et al. Science, 2013, 341(6149), 1230444.
78 Wang C C, Wang X, Liu W. Chemical Engineering Journal, 2020, 391, 123601.
79 Du C, Zhang Z, Yu G, et al. Chemosphere, 2021, 272, 129501.
80 Rodríguez N A, Savateev A, Grela M A, et al. ACS Applied Materials & Interfaces, 2017, 9(27), 22941.
81 Ornstein J, Ozdemir R O, Boehme A, et al. MedRxiv, 2020, preprint. DOI: 10.1101/2020.10.01.20204214.
82 Li P, Li J, Feng X, et al. Nature Communications, 2019, 10(1), 2177.
83 Wen J, Xie J, Chen X, et al. Applied Surface Science, 2017, 391, 72.
84 Yao G, Yang S, He J, et al. Applied Catalysis B: Environmental, 2021, 287, 119986.
85 Cao S, Low J, Yu J, et al. Advanced Materials, 2015, 27(13), 2150.
86 Li Y, Zhang C, Shuai D, et al. Water Research, 2016, 106, 249.
87 Balagna C, Perero S, Percivalle E, et al. Open Ceramics, 2020, 1, 100006.
88 Donskyi I S, Nie C, Ludwig K, et al. Small, 2021, 17(11), 2007091.
89 Unal M A, Bayrakdar F, Nazir H, et al. Small, 2021, 17(25), 2101483.
90 Liu W, Ji H, Chen L, et al. Emerging nanotechnologies for water treatment, the Royal Society of Chemistry, 2022, pp.185.
91 Ji H, Ni J, Zhao D, et al. ACS ES&T Engineering, 2022, 2(6), 1015.
92 Wang H, Li X, Zhao X, et al. Chinese Journal of Catalysis, 2022, 43(2), 178.
93 Liu Z, Gao W, Liu L, et al. Journal of Hazardous Materials, 2023, 442, 130036.
94 Zhong Y, Shao Y, Ma F, et al. Nano Energy, 2017, 31, 84.
95 Weon S, Choi W. Environmental Science & Technology, 2016, 50(5), 2556.
96 Ning X, Lu B, Zhang Z, et al. Angewandte Chemie International Edition, 2019, 58(47), 16800.
97 Chen Y X, Zhang M, Zhang S Z, et al. Green Chemistry, 2022, 24(10), 4071.
98 Mirzaei A, Yerushalmi L, Chen Z, et al. Water Research, 2018, 132, 241.
99 Zheng Y W, Chen B, Ye P, et al. Journal of the American Chemical Society, 2016, 138(32), 10080.
100 Zhu J Y, Li Y P, Wang X J, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(17), 14953.
101 Chen Y, Ji Q, Zhang G, et al. Angewandte Chemie International Edition, 2021, 60(14), 7744.
102 Wei Z, Wang W, Li W, et al. Angewandte Chemie International Edition, 2021, 60(15), 8236.
103 Xiao J D, Han L, Luo J, et al. Angewandte Chemie International Edition, 2018, 57(4), 1103.
104 Gao Y, Nie W, Zhu Q, et al. Angewandte Chemie International Edition, 2020, 59(41), 18218.
105 Wang Y, Liu X H, Wang Q, et al. Angewandte Chemie International Edition, 2020, 59(20), 7748.
106 Huang H, Tu S, Zeng C, et al. Angewandte Chemie International Edition, 2017, 56(39), 11860.
107 Begum R, Parida M R, Abdelhady A L, et al. Journal of the American Chemical Society, 2016, 139(2), 731.
108 Lei Y, Wang Y, Liu Y, et al. Angewandte Chemie International Edition, 2020, 59(47), 20794.
109 Sun K, Liu M, Pei J, et al. Angewandte Chemie International Edition, 2020, 59(50), 22749.
110 Liu F, Shi R, Wang Z, et al. Angewandte Chemie International Edition, 2019, 58(34), 11791.
111 Wang P, Mao Y, Li L, et al. Angewandte Chemie International Edition, 2019, 58(33), 11329.
112 Shifa T A, Wang F, Liu Y, et al. Advanced Materials, 2018, 31(45), 1804828.
113 Xu M L, Lu M, Qin G Y, et al. Angewandte Chemie International Edition, DOI: 10.1002/anie.202210700.
114 Xie X, Wang R, Zhang X, et al. Applied Catalysis B: Environmental, 2021, 295, 120315.
[1] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[2] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[3] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[4] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[5] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[6] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[7] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[8] 丁梅鹃, 史慧芳, 安众福. 有机室温磷光材料在生物医学中的应用[J]. 材料导报, 2022, 36(3): 22010004-11.
[9] 黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
[10] 蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 22030040-7.
[11] 张慧敏, 单展, 王宏, 张晓艳. 球状钼酸钙在可见光下选择性光催化降解废水中的抗生素[J]. 材料导报, 2022, 36(19): 22010249-7.
[12] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[13] 李兵, 黄有鹏, 吴福礼, 杨本宏. Ti3C2Tx/Bi2WO6复合材料的制备及其光催化性能[J]. 材料导报, 2022, 36(17): 21010021-4.
[14] 县涛, 高宇姝, 孙小锋, 邸丽景, 马俊, 周永杰. 修饰AuAg合金纳米颗粒对BiOBr纳米片光催化降解和还原性能的提高[J]. 材料导报, 2022, 36(13): 21010273-8.
[15] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed