Research Progress and Implication on Photocatalytic Inactivation of SARS-CoV-2 by Nanomaterials
CHEN Long1, LIU Zhaoli1, YANG Xudong1, ZHANG Ruohan1, SUN Weiliang2, LIU Wen1,*
1 State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, the Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China 2 Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge 70803, LA, USA
Abstract: The global pandemic of COVID-19 caused by the novel coronavirus (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2) has a huge impact on human health and socioeconomic development. Thus, inactivation of SARS-CoV-2 is a big concern for environmental public health and sanitary security. The virus will not be inactivated immediately after leave the host, leading to extended transmission routes. Water is an important medium for SARS-CoV-2 transmission, especially the urban domestic sewage and medical wastewater. The surface functional protein and nucleic acid (RNA) are the main components of SARS-CoV-2, which can be attacked and destroyed by reactive species such as oxidative radicals, leading to inactivation of virus. The photocatalysis technology using nanomaterials can efficiently produce reactive oxygen species (ROS) under light irradiation. Therefore, by the attack of ROS, the structural protein of virus can be destroyed, the RNA can be damaged to inhibit its biological development, or its binding process to the host can be blocked. In this study, the environmental distribution and transmission characteristics of SARS-CoV-2 are presented firstly. Then, the mechanisms of photocatalysis by using nanomaterials and its application on SARS-CoV-2 inactivation are illustrated. The research progress on inactivation of SARS-CoV-2 through nanomaterial photocatalysis is comprehensively summarized, and the promising photocatalysts that can be used for SARS-CoV-2 inactivation are also proposed. This study can provide guidance for the development of photocatalytic nanomaterials for the inactivation of SARS-CoV-2, and has great significance for epidemic prevention and control, especially for cutting off the transmission route of virus in water.
作者简介: 陈龙,2019年7月于北京大学获得工学学士学位。现为北京大学环境科学与工程学院博士研究生,在刘文研究员的指导下进行研究。目前主要研究领域为纳米材料高级氧化技术去除水体中有机污染物和微生物,目前已经在Water Research、Chemical Engineering Journal等期刊发表论文15篇。 刘文,北京大学环境科学与工程学院研究员、博士研究生导师。国家级青年人才入选者,国家重点研发计划项目(青年)首席科学家,北京大学环境纳米实验室主任。2009年毕业于南开大学,获环境工程学士学位;2014年毕业于北京大学,获环境工程博士学位;2014年8月至2017年9月先后在美国奥本大学和佐治亚理工学院从事博士后研究。目前主要从事环境纳米技术、水污染控制工程等方面的研究工作。在国内外期刊上发表学术论文200余篇,其中SCI收录180余篇,包括以第一/通信作者在Journal of the American Chemical Society、Environmental Science & Technology、Water Research等期刊上发表的论文。入选美国斯坦福大学发布的2020—2022年世界排名前2%科学家排行榜 “年度影响力”榜单,以及全球学者库评出的2021—2022年“全球顶尖前10万科学家名单”。
引用本文:
陈龙, 刘兆利, 杨旭东, 张偌涵, 孙玮良, 刘文. 纳米材料光催化灭活新型冠状病毒SARS-CoV-2研究进展与启示[J]. 材料导报, 2022, 36(20): 22100084-12.
CHEN Long, LIU Zhaoli, YANG Xudong, ZHANG Ruohan, SUN Weiliang, LIU Wen. Research Progress and Implication on Photocatalytic Inactivation of SARS-CoV-2 by Nanomaterials. Materials Reports, 2022, 36(20): 22100084-12.
1 Johns Hopkins University & Medicine Coronavirus Resource Center.[2022-10-10].https:∥coronavirus.jhu.edu. 2 Li C X, Noreen S, Zhang L X, et al. Biomedicine & Pharmacotherapy, 2022, 146, 112550. 3 Bouadma L, Lescure F X, Lucet J C, et al. Intensive Care Medicine, 2020, 46(4), 579. 4 Singh J, Pandit P, McArthur A G, et al. Virology Journal, 2021, 18(1), 166. 5 Zhou P, Yang X L, Wang X G, et al. Nature, 2020, 579(7798), 270. 6 Patial S, Kumar A, Raizada P, et al. Journal of Environmental Chemical Engineering, 2022, 10(3), 107527. 7 Yao H, Song Y, Chen Y, et al. Cell, 2020, 183(3), 730. 8 Tizaoui C. Ozone: Science & Engineering, 2020, 42(5), 378. 9 Zahmatkesh S, Sillanpaa M, Rezakhani Y, et al. Journal of Hazardous Materials Advances, 2022, 7, 100140. 10 Mistry P, Barmania F, Mellet J, et al. Frontiers in Immunology, 2021, 12, 809244. 11 Mohapatra R K, Tiwari R, Sarangi A K, et al. Journal of Medical Virology, 2022, 94(5), 1761. 12 Grint D J, Wing K, Williamson E, et al.Eurosurveillance,2021,26(11),2100256. 13 Tegally H, Wilkinson E, Althaus C L, et al. medRxiv, 2021, preprint. DOI: 10.1101/2021.09.23.21264018. 14 del Rio C, Omer S B, Malani P N. Jama, 2022, 327(4), 319. 15 Tareq A, Emran T B, Dhama K, et al. Human Vaccines & Immunotherapeutics, 2021, 17(11), 4126. 16 Ito K, Piantham C, Nishiura H. Journal of Medical Virology, 2022, 94(5), 2265. 17 Wiktorczyk-Kapischke N, Grudlewska-Buda K, Wałecka-Zacharska E, et al. Science of the Total Environment, 2021, 770, 145260. 18 Van Doremalen N, Bushmaker T, Morris D H, et al. New England Journal of Medicine, 2020, 382(16), 1564. 19 Khaiboullina S, Uppal T, Dhabarde N, et al. Viruses, 2021, 13(1),19. 20 Cheung K S, Hung I F, Chan P P, et al. Gastroenterology, 2020, 159(1), 81. 21 Hart O E, Halden R U. Science of the Total Environment, 2020, 730, 138875. 22 Bivins A, Greaves J, Fischer R, et al. Environmental Science & Techno-logy Letters, 2020, 7(12), 937. 23 Shutler J, Zaraska K, Holding T, et al. ACS EST Water, 2021, 1(4), 949. 24 Khorram-Manesh A, Goniewicz K,Burkle F M.Journal of Global Health, 2021, 11, 03016. 25 Zaneti R N, Girardi V, Spilki F R, et al. Science of the Total Environment, 2021, 754, 142163. 26 Li J, Lai S, Gao G F, et al. Nature, 2021, 600(7889), 408. 27 Mohapatra S, Menon N G, Mohapatra G, et al. Science of the Total Environment, 2021, 765, 142746. 28 Wurtzer S, Marechal V, Mouchel J, et al. Eurosurveillance, 2020, 25(50), 2000776. 29 Kumar M, Kuroda K, Patel A K, et al. Science of the Total Environment, 2021, 754, 142329. 30 Randazzo W, Truchado P, Cuevas-Ferrando E, et al. Water Research, 2020, 181, 115942. 31 Martins R B, Castro I A, Pontelli M, et al. Ozone Science & Enginee-ring, 2021, 43(2), 108. 32 Chen F, Ma T, Zhang T, et al. Advanced Materials, 2021, 33(10), 2005256. 33 Edvinsson T. Royal Society Open Science, 2018, 5(9), 180387. 34 Jastrzębska A M, Vasilchenko A S. ACS Sustainable Chemistry & Engineering, 2021, 9(2), 601. 35 Bao D, Upadhyayula S, Larsen J M, et al. Journal of the American Chemical Society, 2014, 136(37), 12966. 36 Fang Z B, Liu T T, Liu J, et al. Journal of the American Chemical Society, 2020, 142(28), 12515. 37 Liu Z, Zhang C, Liu L, et al. Advanced Materials, 2021, 33(48), 2104099. 38 Xia P, Cao S, Zhu B, et al. Angewandte Chemie International Edition, 2020, 59(13), 5218. 39 Marchioro A, Teuscher J, Friedrich D, et al. Nature Photonics, 2014, 8(3), 250. 40 Nosaka Y, Nosaka A Y. Chemical Reviews, 2017, 117(17), 11302. 41 Pan Q, Abdellah M, Cao Y, et al. Nature Communications, 2022, 13(1), 1. 42 Wang X D, Huang Y H, Liao J F, et al. Journal of the American Chemical Society, 2019, 141(34), 13434. 43 Gao W, Addiego C, Wang H, et al. Nature, 2019, 575(7783), 480. 44 Lei Y, Li Y, Lu C, et al. Nature, 2022, 608(7922), 317. 45 Motti S G, Patel J B, Oliver R D J, et al. Nature Communications, 2021, 12(1), 1. 46 Wang L, Zhang J, Zhang Y, et al. Small, 2021, 18(8), 2104561. 47 Wang D, Wu H, Phua S Z F, et al. Nature Communications, 2020, 11(1), 1. 48 Li J, Song S, Meng J, et al. Journal of the American Chemical Society, 2021, 143(37), 15427. 49 Li J, Li Z, Liu X, et al. Nature Communications, 2021, 12(1), 1. 50 Ji H D, Qi J J, Zheng M S, et al. Progress in Chemistry, 2022, 34(1), 207(in Chinese). 冀豪栋, 齐娟娟, 郑茂盛, 等.化学进展, 2022, 34(1), 207. 51 Biasin M, Bianco A, Pareschi G, et al. Scientific Reports, 2021, 11(1), 6260. 52 Sesti-Costa R, Negrão C V Z, Shimizu J F, et al. Photodiagnosis and Photodynamic Therapy, 2022, 39, 103015. 53 Pozo-Antonio J S, Sanmartín P J B. Biofouling, 2018, 34(8), 851. 54 Guo Q, Zhou C, Ma Z, et al. Advanced Materials, 2019, 31(50), 1901997. 55 Noman M T, Ashraf M A, Ali A. Environmental Science and Pollution Research, 2019, 26(4), 3262. 56 Zhang J, Zhou P, Liu J, et al. Physical Chemistry Chemical Physics, 2014, 16(38), 20382. 57 Al-Mamun M R, Kader S, Islam M S, et al. Journal of Environmental Chemical Engineering, 2019, 7(5), 103248. 58 Chen D, Cheng Y, Zhou N, et al. Journal of Cleaner Production, 2020, 268, 121725. 59 Dong H, Zeng G, Tang L, et al. Water Research, 2015, 79, 128. 60 Matsuura R, Lo C W, Wada S, et al. Viruses, 2021, 13(5), 942. 61 Hamza R Z, Gobouri A A, Al-Yasi H M, et al. Coatings, 2021, 11(6), 680. 62 Tong Y, Shi G, Hu G, et al. Chemical Engineering Journal, 2021, 414, 128788. 63 Micochova P, Chadha A, Hesseloj T, et al. Welcome Open Research, DOI: 10.12688/wellcomeopenres.16577.2. 64 Djellabi R, Basilico N, Delbue S, et al. International Journal of Molecular Sciences, 2021, 22(16), 8836. 65 Negrete O, Bradfute S, Larson S R, et al. Photocatalytic material surfaces for SARS-CoV-2 virus inactivation. No. SAND-2020-9861. Sandia National Lab.(SNL-CA), Livermore, CA(United States); Sandia National Lab.(SNL-NM), Albuquerque, NM(United States), 2020. 66 Nakano R, Yamaguchi A, Sunada K, et al. Scientific Reports, 2022, 12(1), 5804. 67 Girish K S, Koteswara R K S R. Applied Surface Science, 2015, 355, 939. 68 Peleyeju M G, Viljoen E L. Journal of Water Process Engineering, 2021, 40, 101930. 69 Liao M, Su L, Deng Y, et al. Journal of Materials Science, 2021, 56(26), 14416. 70 Shandilya P, Sambyal S, Sharma R, et al. Journal of Hazardous Mate-rials, 2022, 428, 128218. 71 Dong P, Hou G, Xi X, et al. Environmental Science: Nano, 2017, 4(3), 539. 72 Girish K S, Koteswara R K S R. Applied Surface Science, 2017, 391, 124. 73 Uema M, Yonemitsu K, Momose Y, et al. BioRxiv, 2020, preprint. DOI: 10.1101/2020.11.01.364364. 74 Ghezzi S, Pagani I, Poli G, et al. Nanotechnology, 2020, 1(3), 109. 75 Matsuura R, Maeda K, Hagiwara K, et al. Pathogens, 2022, 11(8), 922. 76 Ling L, Carletti T, Cheng Z, et al. BioRxiv, 2021, preprint. DOI: 10.1101/2021.03.09.434359. 77 Furukawa H, Cordova K E, O’Keeffe M, et al. Science, 2013, 341(6149), 1230444. 78 Wang C C, Wang X, Liu W. Chemical Engineering Journal, 2020, 391, 123601. 79 Du C, Zhang Z, Yu G, et al. Chemosphere, 2021, 272, 129501. 80 Rodríguez N A, Savateev A, Grela M A, et al. ACS Applied Materials & Interfaces, 2017, 9(27), 22941. 81 Ornstein J, Ozdemir R O, Boehme A, et al. MedRxiv, 2020, preprint. DOI: 10.1101/2020.10.01.20204214. 82 Li P, Li J, Feng X, et al. Nature Communications, 2019, 10(1), 2177. 83 Wen J, Xie J, Chen X, et al. Applied Surface Science, 2017, 391, 72. 84 Yao G, Yang S, He J, et al. Applied Catalysis B: Environmental, 2021, 287, 119986. 85 Cao S, Low J, Yu J, et al. Advanced Materials, 2015, 27(13), 2150. 86 Li Y, Zhang C, Shuai D, et al. Water Research, 2016, 106, 249. 87 Balagna C, Perero S, Percivalle E, et al. Open Ceramics, 2020, 1, 100006. 88 Donskyi I S, Nie C, Ludwig K, et al. Small, 2021, 17(11), 2007091. 89 Unal M A, Bayrakdar F, Nazir H, et al. Small, 2021, 17(25), 2101483. 90 Liu W, Ji H, Chen L, et al. Emerging nanotechnologies for water treatment, the Royal Society of Chemistry, 2022, pp.185. 91 Ji H, Ni J, Zhao D, et al. ACS ES&T Engineering, 2022, 2(6), 1015. 92 Wang H, Li X, Zhao X, et al. Chinese Journal of Catalysis, 2022, 43(2), 178. 93 Liu Z, Gao W, Liu L, et al. Journal of Hazardous Materials, 2023, 442, 130036. 94 Zhong Y, Shao Y, Ma F, et al. Nano Energy, 2017, 31, 84. 95 Weon S, Choi W. Environmental Science & Technology, 2016, 50(5), 2556. 96 Ning X, Lu B, Zhang Z, et al. Angewandte Chemie International Edition, 2019, 58(47), 16800. 97 Chen Y X, Zhang M, Zhang S Z, et al. Green Chemistry, 2022, 24(10), 4071. 98 Mirzaei A, Yerushalmi L, Chen Z, et al. Water Research, 2018, 132, 241. 99 Zheng Y W, Chen B, Ye P, et al. Journal of the American Chemical Society, 2016, 138(32), 10080. 100 Zhu J Y, Li Y P, Wang X J, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(17), 14953. 101 Chen Y, Ji Q, Zhang G, et al. Angewandte Chemie International Edition, 2021, 60(14), 7744. 102 Wei Z, Wang W, Li W, et al. Angewandte Chemie International Edition, 2021, 60(15), 8236. 103 Xiao J D, Han L, Luo J, et al. Angewandte Chemie International Edition, 2018, 57(4), 1103. 104 Gao Y, Nie W, Zhu Q, et al. Angewandte Chemie International Edition, 2020, 59(41), 18218. 105 Wang Y, Liu X H, Wang Q, et al. Angewandte Chemie International Edition, 2020, 59(20), 7748. 106 Huang H, Tu S, Zeng C, et al. Angewandte Chemie International Edition, 2017, 56(39), 11860. 107 Begum R, Parida M R, Abdelhady A L, et al. Journal of the American Chemical Society, 2016, 139(2), 731. 108 Lei Y, Wang Y, Liu Y, et al. Angewandte Chemie International Edition, 2020, 59(47), 20794. 109 Sun K, Liu M, Pei J, et al. Angewandte Chemie International Edition, 2020, 59(50), 22749. 110 Liu F, Shi R, Wang Z, et al. Angewandte Chemie International Edition, 2019, 58(34), 11791. 111 Wang P, Mao Y, Li L, et al. Angewandte Chemie International Edition, 2019, 58(33), 11329. 112 Shifa T A, Wang F, Liu Y, et al. Advanced Materials, 2018, 31(45), 1804828. 113 Xu M L, Lu M, Qin G Y, et al. Angewandte Chemie International Edition, DOI: 10.1002/anie.202210700. 114 Xie X, Wang R, Zhang X, et al. Applied Catalysis B: Environmental, 2021, 295, 120315.