Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 21010273-8    https://doi.org/10.11896/cldb.21010273
  无机非金属及其复合材料 |
修饰AuAg合金纳米颗粒对BiOBr纳米片光催化降解和还原性能的提高
县涛*, 高宇姝, 孙小锋, 邸丽景, 马俊, 周永杰
青海师范大学物理与电子信息工程学院,西宁 810008
Enhanced Photocatalytic Degradation and Reduction Activity of BiOBr Nanoplates by the Decoration of AuAg Alloy Nanoparticles
XIAN Tao*, GAO Yushu, SUN Xiaofeng, DI Lijing, MA Jun, ZHOU Yongjie
College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China
下载:  全 文 ( PDF ) ( 10072KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法制备出BiOBr纳米片,并通过光还原法将Au、Ag和AuAg合金纳米颗粒修饰在BiOBr纳米片表面,获得Au/BiOBr、Ag/BiOBr和具有不同Au/Ag原子比的AuAg/BiOBr复合光催化剂。通过XPS、HRTEM和Mapping表征,充分证实贵金属纳米颗粒均匀地分布在BiOBr表面。利用紫外-可见光漫反射光谱观察到复合光催化剂中贵金属纳米颗粒的表面等离子体共振(SPR)效应。以染料(酸性橙7(AO7)和罗丹明B(RhB))以及Cr(Ⅵ)作为目标反应物,在模拟太阳光照射下对产物的光催化降解和还原性能进行了考察。结果表明:相比于BiOBr单体,Au/BiOBr、Ag/BiOBr和AuAg/BiOBr复合材料的光催化效率均得到提升,其中Au0.4Ag0.6/BiOBr复合物的光催化效果最佳。借助电化学和荧光光谱测试,证明在AuAg/BiOBr复合物中实现了光生电子和空穴的高效分离。光催化循环实验表明Au0.4Ag0.6/BiOBr复合物具有良好的光催化和结构稳定性。基于以上实验结果,提出了AuAg合金纳米颗粒对BiOBr纳米片光催化性能的改性机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
县涛
高宇姝
孙小锋
邸丽景
马俊
周永杰
关键词:  BiOBr  AuAg合金纳米颗粒  光催化  改性  降解    
Abstract: BiOBr nanoplates were prepared through the hydrothermal method, and then Au, Ag and AuAg alloy nanoparticles were decorated on the surface of BiOBr nanoplates by photoreduction route, leading to the formation of Au/BiOBr, Ag/BiOBr and AuAg/BiOBr composites with different Au/Ag atomic ratio. The XPS, HRTEM and Mapping characterization results show that the noble metal nanoparticles were uniformly distributed on the BiOBr nanoplates surface. The surface plasmon resonance (SPR) effect of noble metal nanoparticles was observed in the ultraviolet-visible diffuse reflectance spectra. Acid orange 7 (AO7), Rhodamine B (RhB) and Cr(Ⅵ) were selected as the target reactant, and then the photocatalytic degradation and reduction activity of products were evaluated under simulated sunlight irradiation. The experimental results indicate that the photocatalytic activity of Ag/BiOBr, Au/BiOBr and AuAg/BiOBr are much higher than that of BiOBr nanoplates. Among them, the Au0.4Ag0.6/BiOBr composite exhibits optimal photocatalytic efficiency. The efficient seperation of photogenerated electrons and holes in the AuAg/BiOBr composite was demonstrated by using electrochemical and fluorescence measurement. The photocataltyic cyclic experiment reveals that Au0.4Ag0.6/BiOBr composite has good photocatalytic and structural stability. Based on above results, the modification mechanism of AuAg alloy nanoparticles on the photocatalytic activity of BiOBr nanoplates was proposed.
Key words:  BiOBr    AuAg alloy nanoparticles    photocatalysis    modification    degradation
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TB383  
基金资助: 青海省自然科学基金(2021-ZJ-714);国家自然科学基金(51602170)
通讯作者:  * xiantao1985@126.com   
作者简介:  县涛,青海师范大学副教授。本科、硕士和博士均就读于兰州理工大学,2015年6月毕业于兰州理工大学,获得博士学位。主要研究方向为光催化材料。已在国内外重要期刊发表SCI论文40余篇,主持国家级和省部级项目5项。
引用本文:    
县涛, 高宇姝, 孙小锋, 邸丽景, 马俊, 周永杰. 修饰AuAg合金纳米颗粒对BiOBr纳米片光催化降解和还原性能的提高[J]. 材料导报, 2022, 36(13): 21010273-8.
XIAN Tao, GAO Yushu, SUN Xiaofeng, DI Lijing, MA Jun, ZHOU Yongjie. Enhanced Photocatalytic Degradation and Reduction Activity of BiOBr Nanoplates by the Decoration of AuAg Alloy Nanoparticles. Materials Reports, 2022, 36(13): 21010273-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010273  或          http://www.mater-rep.com/CN/Y2022/V36/I13/21010273
1 Hi W Y, Wang X Y, Yuan H, et al. Materials Reports B: Research Papers, 2020, 34(5), 10018( in Chinese).
胡文宇, 王笑乙, 袁欢, 等. 材料导报:研究篇, 2020, 34(5), 10018.
2 Zhang D, Zhang L, Zhang G, et al. Journal of Materials Science, 2019, 54(10), 7617.
3 Kim S R, Jo W K. Journal of Hazardous Materials, 2019, 380, 120866.
4 Liang Z, Yang J, Zhou C, et al. Inorganic Chemistry Communications, 2018, 90, 97.
5 Li W, Zou Y, Geng X, et al. Molecular Catalysis, 2017, 438, 19.
6 Li J, Liu T B, Zhu Y X, et al. Materials Reports A: Review Papers, 2020, 34(11), 21045(in Chinese).
李靖, 刘天宝, 朱亚鑫, 等 材料导报:综述篇, 2020, 34(11), 21045.
7 Bhavsar K S, Labhane P K, Dhake R B, et al. Inorganic Chemistry Communications, 2019, 104, 134.
8 Zhang J, Qiao S Z, Qi L, et al. Physical Chemistry Chemical Physics, 2013, 15, 12088.
9 Cadenbach T, Benitez M J, Morales A L, et al. Beilstein Journal Nanotechnology, 2020, 11, 1822.
10 Qiang Z M, Liu X M, Li F, et al. Chemical Engineering Journal, 2021, 403, 126327.
11 Hermans Y, Olivier C, Junge H, et al. ACS Applied Materials & Interfaces, 2020, 12(48), 53910.
12 Vinh T H T, Thi C M, Viet P V, et al. Materials Letters, 2020, 281,128637.
13 Li H, Chen S, Shang H, et al. Science Bulletin, 2020, 65(22), 1916.
14 Song X, Wang J, Zhang R, et al. Journal of Physical Chemistry C, 2019, 123, 15599.
15 Jiang Q, Ji M X, Chen R, et al. Journal of Colloid and Interface Science, 2020, 574, 131.
16 Yin H, Chen X, Hou R, et al. ACS Applied Materials & Interfaces, 2015, 7(36), 20076.
17 Yan Y, Yang H, Yi Z, et al. Environmental Engineering Science, 2020, 37(1), 64.
18 Liu C, Dong X, Hao Y, et al. RSC Advances, 2017, 7(36), 22415.
19 Qu X, Liu M, Yang J, et al. Journal of Solid State Chemistry, 2018, 264, 77.
20 Song X C, Zheng Y F, Yin H Y, et al. New Journal of Chemistry, 2016, 40(1), 130.
21 Hou R, Gao Y, Zhu H, et al. Chemical Engineering Journal, 2017, 317, 286.
22 Yan Y, Yang H, Yi Z, et al. Micromachines, 2019, 10(4), 254.
23 Yu C, Cao F, Li G, et al. Separation and Purification Technology, 2013, 120, 110.
24 Abdelhameed R M, El-Shahat M, Emam H E. Carbohydrate Polymers, 2020, 247, 116695.
25 Xian T, Sun X, Di L, et al. Optical Materials, 2021, 111, 110614.
26 Meng X, Li Z, Chen J, et al. Applied Surface Science, 2018, 433, 76.
27 Di J, Xia J, Ji M, et al. Applied Catalysis B-Environmental, 2016, 188, 376.
28 Ma Y, Kobayashi K, Cao Y, et al. Applied Catalysis B: Environmental, 2019, 245, 681.
29 Sun X, Di L, Xian T, et al. Journal of Materials Science: Materials in Electronics, 2021, 32, 623.
30 Liu X, Cai L. Applied Surface Science, 2019, 483, 875.
31 Jia Y, Yang Y, Guo Y, et al. Dalton Transactions, 2015, 44(20), 9439.
32 Yu Q Q, Chen J Y, Li Y X, et al. Chinese Journal of Catalysis, 2020, 41(10), 1603.
33 Chattopadhyay S, Bysakh S, Mishra P M, et al. Langmuir, 2019, 35(44), 14364.
34 Zheng Q, Cao Y, Huang N, et al. Journal of Inorganic Materials, 2020, 35(11), 1255(in Chinese).
郑倩, 曹玥晗, 黄南建, 等. 无机材料学报, 2020, 35(11), 1255.
35 Xian T, Di L, Sun X, et al. Nanoscale Research Letters, 2019, 14, 397.
36 Ren X, Wu K, Qin Z, et al. Journal of Alloys and Compounds, 2019, 788, 102.
37 Wang J, Xu H, Li S, et al. Analyst, 2017, 142(24), 4852.
38 Sun X, Xian T, Di L, et al. Chinese Journal of Materials Research, 2020, 34(12), 921(in Chinese).
孙小锋, 县涛, 邸丽景, 等. 材料研究学报, 2020, 34(12), 921.
39 Zhang G H, Wang J C, Zhang H R, et al. Journal of Alloys and Compounds, 2021, 855, 157512.
40 An H Q, Lv Z T, Zhang K, et al. Applied Surface Science, 2021, 536, 147934.
41 Sahoo M, Mansingh S, Parida K M. Journal of Materials Chemistry A, 2019, 7(13), 7614.
42 Ao Y, Wang K, Wang P, et al. Applied Catalysis B: Environmental, 2016, 194, 157.
43 Yu X, Wang L, Feng L, et al. Journal of Fuel Chemistry and Technology, 2016, 44(8), 937.
44 Konstatninou I K, Albanis T A. Applied Catalysis B :Environmental, 2004, 49, 1.
45 Saifullahi S I, Rohana A, Noor H M K. Research on Chemical Interme-diates, 2018, 44(5), 5357.
46 Zhao X, Yang H, Cui Z, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(14), 13785.
47 Chao C, Zhou Y, Han T, et al. Journal of Alloys and Compounds, 2020, 825, 154060.
48 Wang F, Yang H, Zhang H, et al. Journal of Materials Science: Materials in Electronics, 2018, 29(2), 1304.
49 Zhu Y, Yang S, Cai J, et al. Materials Letters, 2015, 154, 163.
[1] 李世杰, 王智辉, 代琳心, 李振瑞, 王佳军, 马建锋, 刘杏娥. 银/尿素改性竹质活性炭的制备及甲醛净化与抗菌性能[J]. 材料导报, 2022, 36(Z1): 22030103-6.
[2] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[3] 王秀超, 秦莹莹, 郭红革. 生物基可降解包装薄膜的研究进展[J]. 材料导报, 2022, 36(Z1): 21070279-8.
[4] 张子健, 姜锋, 于春晓. 长碳链聚酰胺PA1012的改性研究进展[J]. 材料导报, 2022, 36(Z1): 21100088-6.
[5] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[6] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[7] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[8] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[9] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[10] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[11] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[12] 李正月, 李东泽, 孙秀英, 蔡沛文, 廖雨青, 陈秀琼, 颜慧琼, 林强. 球磨辅助海藻酸钠降解工艺参数的优化及其产物的结构和性能[J]. 材料导报, 2022, 36(6): 21010003-6.
[13] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[14] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[15] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed