Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21040178-7    https://doi.org/10.11896/cldb.21040178
  无机非金属及其复合材料 |
水库底泥和电石渣高温改性钢渣的研究
王长龙1, 赵高飞1, 王永波2,*, 张苏花2, 郑永超3, 霍泽坤1, 王绍熙1, 任真真1, 邹佳一1
1 河北工程大学土木工程学院,河北 邯郸 056038
2 邯郸市建业建设工程质量检测有限公司,河北 邯郸 056000
3 北京建筑材料科学研究总院有限公司,固废资源化利用与节能建材国家重点实验室,北京 100041
Study on the High-temperature Modified Steel Slag Using Reservoir Sediment and Carbide Slag
WANG Changlong1, ZHAO Gaofei1, WANG Yongbo2,*, ZHANG Shuhua2, ZHENG Yongchao3, HUO Zekun1, WANG Shaoxi1, REN Zhenzhen1, ZOU Jiayi1
1 School of Civil Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
2 Handan Jianye Construction Engineering Quality Inspection Co., Ltd., Handan 056000, Hebei, China
3 State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research Institute Co., Ltd., Beijing 100041, China
下载:  全 文 ( PDF ) ( 3699KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了复合改性剂(水库底泥+电石渣)高温改性处理对钢渣物相、结构、性能的影响,结合X射线荧光光谱(XRF)、X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱分析(EDS)和粒度分析等测试方法,对原料的物化性质、改性钢渣的矿物组成、微观结构、安定性和胶凝性能进行了分析。结果表明,高温改性后的钢渣中出现了透辉石(CMS2)、镁铁尖晶石(MgFe2O4)、钙铝黄长石(C2AS)、铝酸三钙(C3A)、磁铁矿(Fe3O4)等新矿物相;高温处理促使钢渣中的FeO-MgO-MnO固熔体(RO相)分解,其中的FeO转化为Fe3O4;钢渣的高温改性提升了钢渣的胶凝活性,有效地降低了钢渣中f-CaO和f-MgO的含量,当复合改性剂掺量为20%(质量分数,其中水库底泥与电石渣的质量比为3:1)、处理温度为1 150 ℃时,改性钢渣的28 d活性指数较原钢渣提高了12.2%,达到82.4%,符合GB/T 20491-2017《用于水泥和混凝土中的钢渣粉》中一级钢渣粉的活性指数(不低于80%)要求,原钢渣中f-CaO和f-MgO的质量分数分别降至1.21%和1.98%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王长龙
赵高飞
王永波
张苏花
郑永超
霍泽坤
王绍熙
任真真
邹佳一
关键词:  钢渣  水库底泥  电石渣  复合改性剂  性能    
Abstract: High-temperature modification using reservoir sediment and carbide slag was performed to study its influence on phase, structure and properties of steel slag. The physicochemical properties of raw materials, mineral constituents and microstructure of steel slag after the high-temperature modification were analyzed by X-ray fluorescence analyzer (XRF), X-ray diffraction (XRD), scanning electronic microscopy (SEM), energy dispersive spectrometry (EDS) and particle size analysis. It is found that new mineral phases such as diopside (CMS2), ceylonite (MgFe2O4), gehlenite (C2AS), tricalcium aluminate (C3A) and magnetite (Fe3O4) form in the modified steel slag. The high-temperature modification promotes the decomposition of RO phase in steel slag, in which FeO is converted to magnetite (Fe3O4) simultaneously. The high temperature modification improves the cementitious reactivity of steel slag, and effectively reduces the dosage f-CaO and f-MgO in steel slag. When the dosage of composite modifier is 20% (m(reservoir sediment):m(carbide slag)=3:1) and the treatment temperature is 1 150 ℃, the 28 d activity index of modified steel slag is 12.2% higher than that of original steel slag, reaching 82.4%, which meets the technical requirements of GB/T 20491-2017 ‘steel slag powder used in cement and concrete' that the activity index of grade I steel slag powder is greater than or equal to 80%. The mass fraction of f-CaO and f-MgO in the original steel slag decreased to 1.21% and 1.98% respectively.
Key words:  steel slag    reservoir sediment    carbide slag    composite modifier    property
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TU522.3  
基金资助: 国家重点研发计划(2018YFC1903602-01);河北省自然科学基金(E2020402079);陕西省尾矿资源综合利用重点实验室开放基金(2017SKY-WK008);固废资源化利用与节能国家重点实验室开放基金(SWR-2019-008);中铁建设集团有限公司科技研发计划(20-02a;21-13b);河北省研究生创新资助项目(CXZZSS2021091)
通讯作者:  850299601@qq.com   
作者简介:  王长龙,河北工程大学教授、博士研究生导师。2014年1月毕业于北京科技大学,获矿业工程博士专业学位。长期从事新型建筑材料、矿物材料及复杂共生矿产资源综合利用研究。近年来主持国家级项目1项,省部级项目7项,以第一作者或通讯作者发表SCI/EI论文42篇,授权发明专利12项,出版专著3部,获省部级奖13项。
王永波,邯郸市建业建设工程质量检测有限公司高级工程师,注册土木工程师(岩土)。2009年毕业于河北工程大学,获地质工程专业工程硕士学位。长期从事建筑材料、工程结构、地基基础检测研究。近年来参编建材行业标准2项,地方标准3项,省级科研项目3项。
引用本文:    
王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
WANG Changlong, ZHAO Gaofei, WANG Yongbo, ZHANG Shuhua, ZHENG Yongchao, HUO Zekun, WANG Shaoxi, REN Zhenzhen, ZOU Jiayi. Study on the High-temperature Modified Steel Slag Using Reservoir Sediment and Carbide Slag. Materials Reports, 2022, 36(9): 21040178-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040178  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21040178
1 Guo J L, Bao Y P, Wang M. Waste Management, 2018, 78, 318.
2 Dhoble Y N, Ahmed S. Journal of Material Cycles and Waste Management Volume, 2018, 20, 1373.
3 Wang S, Wang C L, Wang Q H, et al. Polish Journal of Environmental Studies, 2018, 27(1), 357.
4 Cui H L, Zhang K F, Zhang G Q, et al. Acta Microscopica, 2019, 48 (4), 770.
5 Roslan N H, Ismail M, Abdul-Majid Z, et al. Construction and Building Materials, 2016, 104, 16.
6 Peng Y C, Huang C L. Journal of Zhejiang University-Science A, 2010, 11(7), 488.
7 Yüksel I. Environment, Development and Sustainability, 2017, 19, 369.
8 Humbert P S, Castro-Gomes J. Journal of Cleaner Production, 2019, 208, 448.
9 Waligora J, Bulteel D, Degrugilliers P, et al. Materials Characterization, 2012, 61(1), 39.
10 Liu S J, Hu Q Q, Zhao F Q, et al. Construction and Building Materials, 2014, 72, 15.
11 Yan P Y, Mi G G, Wang Q. Journal of Thermal Analysis and Calorimetry, 2014, 115(1), 193.
12 Liu W H, Li H, Zhu H M, et al. Materials, 2020, 13(5), 1180.
13 Mo L W, Zhang F, Deng M, et al. Cement and Concrete Composites, 2017, 83, 138.
14 Palankar N, Shankar A U R, Mithun B M. Journal of Cleaner Production, 2016, 129, 437.
15 Qiu X, Xiao S L, Yang Q, et al. Materials and Structures, 2017, 50(5), 209.
16 Guo Y C, Xie J H, Zhao J B, et al. Construction and Building Mate-rials, 2019, 204, 41.
17 Nguyen T T H, Phan D H, Mai H H, et al. Materials, 2020, 13(8), 1928.
18 Nguyen D L, Lam N T, Kim D L, et al. Composites Part B, 2020, 183, 1.
19 Lam M N T, Le D H, Jaritngam S. Construction and Building Materials, 2018, 191, 912.
20 Monosi B, Ruello M L, Sani D. Cement and Concrete Composites, 2016, 66, 66.
21 Lam M N T, Jaritngam S, Le D H. Construction and Building Materials, 2017, 154, 482.
22 Tossavainen M, Engsteom F, Yang Q, et al. Waste Management, 2007, 27(10), 1335.
23 Wu S P, Xue Y J, Ye Q S, et al. Building and Environment, 2007, 42 (7), 2580.
24 Zhang Z S, Lian F, Liao H Q, et al. Journal of University of Science and Technology Beijing, 2012, 34(12), 1379(in Chinese).
张作顺,连芳,廖洪强,等. 北京科技大学学报,2012,34(12),1379.
25 Tran A T, Tran G H, Nguyen N T H, et al. Vietnam Journal of Science and Technology, 2019, 57, 61.
26 Biskri Y, Achoura D, Chelghoum N, et al. Construction and Building Materials, 2017, 150, 167.
27 Zhang H, Wang L, Long H M. Spectroscopy and Spectral Analysis, 2018, 38(7), 2302(in Chinese).
张浩,王林,龙红明. 光谱学与光谱分析,2018,38(7),2302.
28 Mason B. Journal of Iron and Steel Institute, 1944, 11, 69.
29 Zhang Z S. High-temperature modification of steel slag and its hydration-hardening performance. Ph.D. Thesis, University of Science and Technology Beijing, China, 2013(in Chinese).
张作顺. 钢渣的高温改性及其水化硬化性能. 博士学位论文,北京科技大学,2013.
[1] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[2] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[3] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[4] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[5] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[6] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[7] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[8] 陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
[9] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[10] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[11] 易昌鸿, 胡钢, 祝柏林, 陈红祥, 吴隽, 顾华志. 淬火法制备热固化环氧树脂基聚合物分散液晶膜及其调光性能的优化[J]. 材料导报, 2022, 36(8): 21010229-8.
[12] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[13] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[14] 郑皓天, 王子龙, 李翔. 基于纳米晶结构的非晶合金成分设计[J]. 材料导报, 2022, 36(7): 20090031-7.
[15] 连启会, 张行泉, 霍冀川, 吴浪, 张壮森. Nd2O3对钼酸钙-钙钛锆石硼硅酸盐玻璃陶瓷结构和性能的影响[J]. 材料导报, 2022, 36(7): 21020054-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed