Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21040138-7    https://doi.org/10.11896/cldb.21040138
  高分子与聚合物基复合材料 |
聚合氯化铝原位改性聚氨酯泡沫用于油水分离
范雷倚1,2,*, 王锐2, 何睿杰2, 张瑞阳2, 张骞2, 周莹1,2,*
1 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
2 西南石油大学新能源与材料学院,新能源材料及技术研究中心,成都 610500
Polyaluminum Chloride In-situ Modified Polyurethane Foam for Oil-Water Separation
FAN Leiyi1,2,*, WANG Rui2, HE Ruijie2, ZHANG Ruiyang2, ZHANG Qian2, ZHOU Ying1,2,*
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
2 The Center of New Energy Materials and Technology, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 4493KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含油废水的排放造成了严重的环境污染,其净化处理受到了广泛关注。本工作通过原位发泡制备了聚合氯化铝(PAC)改性的聚氨酯泡沫(PAC@PU),研究了其组成结构、表面性质及油水分离性能。所制备的PAC@PU显示出良好的疏水性(水接触角为(140±3)°)和优异的物理、化学稳定性。PAC@PU对泵油的吸收容量高达79.42 g·g-1,经200次吸收-挤压循环后吸收容量仍保持不变;对层状油水混合物的静态分离通量和动态分离通量分别为1.55×106 L·m-3·h-1和3.3×105 L·m-3·h-1。PAC@PU对水包油(O/W)乳液的分离效率高达86.7%,分离通量达到了3×105 L·m-3·h-1。机理分析表明,PAC改善了PU的微观结构和表面能,使PU的疏水性增大,并增大了其对油滴吸附位点的捕获能力。因此,PAC@PU具有优异的乳液分离性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范雷倚
王锐
何睿杰
张瑞阳
张骞
周莹
关键词:  聚氨酯泡沫  聚合氯化铝  油水分离  乳液    
Abstract: The discharge of oily wastewater has caused serious environmental pollution, and its purification treatment has attracted widespread attention. In this work, the polyurethane foam (PU) modified by polyaluminum chloride (PAC) (PAC@PU) was prepared via in-situ foaming process. The composition structure, surface properties and oil-water separation properties of the samples were studied. The obtained PAC@PU showed outstanding hydrophobicity (hydrophobic angle of (140±3)°) and excellent physical and chemical stability. The absorption capacity of PAC@PU for pump oil reached 79.42 g·g-1, which remained unchanged after 200 absorption-extrusion cycles. Moreover, the static separation flux and dynamic separation flux of the layered oil-water mixture were respectively 1.55×106 L·m-3·h-1 and 3.3×105 L·m-3·h-1 over PAC@PU. The separation efficiency of PAC@PU for oil-in-water (O/W) emulsions was as high as 86.7% and the separation flux reached 3×105 L·m-3·h-1. Mechanism analysis showed that PAC improved the hydrophobicity and surface energy of PU, and enriched the adsorption sites of PU, thereby optimizing the ability of PU to capture the oil droplet in O/W emulsions. Overall, PAC@PU exhibits excellent emulsion separation performance.
Key words:  polyurethane foam    polyaluminum chloride    oil-water separation    emulsion
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  O648  
基金资助: 国家自然科学基金石油化工联合基金(U1862111);四川省青年科技创新研究团队专项计划(2016TD0011);四川省学术和技术带头人培养基金
通讯作者:  yzhou@swpu.edu.cn   
作者简介:  范雷倚,2018年6月毕业于西南石油大学,获得工程学士学位。于2018年9月在西南石油大学新能源与材料学院就读硕士研究生,主要从事聚合物在水处理中的应用研究。
周莹,教授,博士研究生导师。国家百千万人才工程人选、“长江学者奖励计划”青年学者、德国洪堡学者、日本JSPS邀请学者、日本京都大学讲座教授等。2010年博士毕业于瑞士苏黎世大学(UZH)后,在苏黎世大学优秀青年基金资助下进行博士后研究,随后又在德国卡尔斯鲁厄理工学院(KIT)从事研究工作。研究团队主要从事的研究包括:氢能与硫化氢资源化利用、非常规天然气高值利用、油水分离材料、工业废气净化及资源化利用等。在科学通报、中国科学化学、Nat.Commun.,Angew. Chem. Int. Ed., ACS Catal.等期刊发表论文130余篇(其论文被正面引用4500多次,H index为40,其中13篇论文入选ESI高被引论文),授权中国发明专利12项、美国发明专利1项。获得霍英东教育基金会青年教师奖二等奖、中国石油和化学工业联合会青年科技突出贡献奖、侯德榜化工科学技术青年奖。担任国家能源新材料技术研发中心理事、四川省金属学会理事、四川省科技青年联合会常务理事、四川省青年联合会委员,以及《材料导报》《物理化学学报》《中国化学快报》,Recent Innovations in Chemical Engineering,Frontiers in Environmental Chemistry等期刊编委或青年编委。
引用本文:    
范雷倚, 王锐, 何睿杰, 张瑞阳, 张骞, 周莹. 聚合氯化铝原位改性聚氨酯泡沫用于油水分离[J]. 材料导报, 2022, 36(9): 21040138-7.
FAN Leiyi, WANG Rui, HE Ruijie, ZHANG Ruiyang, ZHANG Qian, ZHOU Ying. Polyaluminum Chloride In-situ Modified Polyurethane Foam for Oil-Water Separation. Materials Reports, 2022, 36(9): 21040138-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040138  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21040138
1 Wang X L, Pan Y M, Yuan H, et al. Chinese Chemical Letters, 2020, 31(2), 365.
2 Wang Y K, Wang B, Wang J H, et al. Journal of Hazardous Materials, 2018, 344, 849.
3 Wang B X, Wang Q F, Di J C, et al. Acta Physico-Chimica Sinica, 2020, 36(1), 1906044.
4 Ren X Y, Zeng G M, Tang L, et al. Science of the Total Environment, 2018, 610(1), 1154.
5 Liu S Z, Zhang Q, Liu N, et al. Chemical Journal of Chinese Universities, 2020, 41(3), 521.
6 Zhang Y, Zhang Q, Zhang R Y, et al. New Journal of Chemistry, 2019, 43, 6343.
7 Xie Q W, Cai Y W, et al. Journal of Chongqing University of Technology(Nature Science), 2017, 31(6), 99.
8 Qiu L J, Wan W C, Zhang R Y, et al. New Journal of Chemistry, 2018, 42(2), 1003.
9 Wang Z T, Xiao C F, Zhao J, et al. Chemical Journal of Chinese Universities, 2014, 35(11), 2410.
10 Liu S Z, Zhang Q, Fan L Y, et al. Industrial & Engineering Chemistry Research, 2020, 59(25), 11713.
11 Wan W C, Zhang R Y, Li W, et al. Environmental Science: Nano, 2016, 3(1), 107.
12 Qiu L J, Zhang Y, Liu S Z, et al. Chemical Journal of Chinese Universities, 2018, 39(12), 2758.
13 Wan W C, Zhang R Y, Yu S, et al. New Journal of Chemistry, 2016, 40(4), 3040.
14 Hsiao S T, Wang Y S, Liao W H, et al. ACS Applied Materials & Interfaces, 2014, 6(13), 10667.
15 Wu D X, Wu W J, Yu Z Y, et al. Industrial & Engineering Chemistry Research, 2014, 53(52), 20139.
16 Tjandra R, Lui G, Veillleux A, et al. Industrial & Engineering Chemistry Research, 2015, 54(14), 3657.
17 Qin J, Qiu F X, Rong X S, et al. Journal of Applied Polymer Science, 2015, 131(21), 8558.
18 Qiang F, Hu L L, Gong L X, et al. Chemical Engineering Journal, 2018, 334(2), 2154.
19 Wang C F, Lin S J. ACS Applied Materials and Interfaces, 2013, 5(18), 8861.
20 Zhang X T, Liu D Y, Ma Y L, et al. Applied Surface Science, 2017, 422, 116.
21 Kong L Y, Li Y, Qiu F X. Journal of Industrial and Engineering Chemistry, 2018, 58, 369.
22 Zhang T, Kong L Y, Dai Y T, et al. Chemical Engineering Journal, 2017, 309, 7.
23 Liang X, Dong J, Wei G L, et al. Environmental Science: Processes & Impacts, 2020, 22(9), 1908.
24 Yang J, Yan L, Li S, et al. Environmental Letters, 2016, 51(10), 798.
25 Yang C G, Wei G L, Bai J, et al. Separation and Purification Technology, 2020, 257, 1383.
26 Kwon D J, Kim J H, Kim Y J, et al. Composites, 2019, 170, 11.
27 Feng B, Weng J, Yang B C, et al. Biomaterials, 2003, 24(25), 4663.
28 Wong C S, Badri K H. Materials Sciences and Applications,2011,3(2),78.
29 Liu Y, Ma J K, Wu Tao, et al. ACS Applied Materials & Interfaces, 2013, 5(20), 10018.
30 Ning X A, Li K, Li R S, et al. Environmental Chemistry, 2008, 27(2), 263(in Chinese).
宁寻安, 李凯, 李润生,等. 环境化学, 2008, 27(2), 263.
31 Du S Y. Preparation, characterization and flocculation performance of several polyaluminum hydrochloride crystals at 125 ℃.Master's Thesis, Inner Mongolia University, China, 2009(in Chinese).
杜双艳. 125 ℃下几种聚铝盐酸盐结晶的制备、表征及其絮凝性能研究. 硕士学位论文, 内蒙古大学, 2009.
32 Hakim A, Nassar M, Emam A, et al. Materials Chemistry & Physics, 2011, 129(1-2), 301.
33 Kraemer R H, Zammarano M, Linteris G T, et al. Polymer Degradation & Stability, 2010, 95(6), 1115.
34 Cai D Y, Jin J, Yuson K, et al. Composites Science and Technology, 2012, 72(6), 702.
35 Malewska E, Prociak A. Polimery, 2015, 60(7-8), 472.
36 Sun H Y, Xu Z, Gao C. Advanced Materials, 2013, 25(18), 2632.
37 Liu M J, Wang S T, Jiang L. Nature Reviews Materials, 2017, 2(7), 17036.
38 Tang F L, Xu G J, Ma T, et al. Materials, 2018, 11(9), 1488.
39 Dai G C, Zhang Z T, Du W N, et al. Journal of Cleaner Production, 2019, 226, 18.
40 Si Y, Fu Q X, Wang X Q, et al. ACS Nano, 2015, 9(4), 3791.
[1] 江幸, 孔勇, 赵志扬, 沈晓冬. 球形气凝胶材料的研究进展[J]. 材料导报, 2022, 36(8): 20040032-8.
[2] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[3] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[4] 熊康, 杨啟梁, 胡溧. 低污染汽车聚氨酯泡沫设计与吸声性能研究[J]. 材料导报, 2022, 36(5): 20110059-5.
[5] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[6] 汪苏平, 汪源, 胡志豪, 潘阳, 胡传山, 李正平, 高慧敏, 文轩. 乳液聚合法制备降黏型聚羧酸减水剂[J]. 材料导报, 2021, 35(z2): 163-166.
[7] 成晨, 赵燕. 柴油乳化水分离材料的研究进展[J]. 材料导报, 2021, 35(Z1): 536-540.
[8] 梁雷, 王彦玲, 刘斌, 李永飞, 汤龙皓. 含氟聚合物乳液的制备方法及在固液界面的应用[J]. 材料导报, 2021, 35(Z1): 586-593.
[9] 余传明, 曾圣威, 刘叶原, 司徒紫晴, 刘可, 田丽芬, 罗文静, 梁远维, 李泳. 高内相乳液法制备P(St-DVB)多孔吸油材料及其在油水分离中的应用[J]. 材料导报, 2021, 35(4): 4200-4204.
[10] 徐士林, 李绍纯, 耿永娟, 张友来, 陈旭, 许绍宸. 硅烷复合乳液对水泥砂浆干燥收缩性能及力学性能的影响[J]. 材料导报, 2021, 35(22): 22045-22050.
[11] 马丽, 黄建建, 何慧, 杨波, 贾德民, 郭东杰, 陈宝元. 微波辐照辅助核/壳型聚硅氧烷/聚丙烯酸酯复合乳液的制备与表征[J]. 材料导报, 2021, 35(22): 22166-22171.
[12] 杨福生, 张振宇, 李云清, 陈永哲, 任永忠, 马乐, 杨武. 层层自组装法制备超疏水/超亲油棉织物及其油水分离性能[J]. 材料导报, 2021, 35(12): 12190-12195.
[13] 林绍铃, 罗祖获, 陈丹青, 赵小敏, 陈国华. 无卤阻燃硬质聚氨酯泡沫塑料研究进展[J]. 材料导报, 2021, 35(1): 1196-1202.
[14] 杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
[15] 刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 活性炭/聚四氟乙烯改性三聚氰胺海绵及其在油水分离中的应用[J]. 材料导报, 2020, 34(17): 17099-17104.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed