Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 20090031-7    https://doi.org/10.11896/cldb.20090031
  金属与金属基复合材料 |
基于纳米晶结构的非晶合金成分设计
郑皓天, 王子龙, 李翔
上海理工大学材料科学与工程学院,上海 200093
Composition Design of Amorphous Alloy Based on Nanocrystalline Structure
ZHENG Haotian, WANG Zilong, LI Xiang
School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
下载:  全 文 ( PDF ) ( 1920KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 非晶合金具有许多优于传统合金的性能,而具有纳米晶结构的非晶合金材料的许多特性与传统的晶态合金材料和非晶态合金材料有着根本的不同。铁基非晶合金作为应用最广泛的非晶合金体系之一,通过热处理获得的具有纳米晶结构的合金具有更加优异的软磁性能,而这种高性能的功能合金响应了国家节能减排的号召,是21世纪信息、生物、能源、环保、空间与高技术领域重点发展的绿色产品。
为了获得具备更多优异性能的纳米晶合金材料,近几十年来众多学者研究了元素的替代对纳米晶合金的影响。然而,当前对于纳米晶合金的研究仅局限于铁基非晶合金,并未探索其他元素基体的非晶合金;同时,目前对于纳米晶合金成分的设计大多根据经验规律或者探索性试验进行,尚未形成具有统一共识的理论模型。
自1988年Finemet合金问世以来,研究者们除了为提高其软磁性能进行了大量的尝试之外,对纳米晶的形成机理也展开了不断的探索,发现对于Finemet合金纳米晶的结晶机制主要归因于α-Fe(Si)基体中Cu元素和Nb元素的相互作用。Finemet系列合金由于成本低廉,并且具备铁基非晶合金的高磁感与钴基非晶合金的低磁滞损耗与高磁导率,目前已经在变压器及电流互感器等领域实现应用。同时随着社会的进步以及对绿色发展的需求日益增长,对Finemet合金的研究不再局限于其在变压器设计的应用,研究者们对合金的巨磁阻抗效应、表面多样性及其向复合材料的发展也做了大量的探索,实现了其在军工、信息、能源等行业的应用。
本文以经典Finemet合金为例,归纳了近年来通过元素的置换对Finemet合金的研究,分析了各个元素对Finemet合金的影响,通过分析Finemet合金的纳米晶结晶过程,归类出各组成元素影响纳米晶磁性能的机理,在此基础上,提出了一种研究纳米晶磁性合金的理论模型。最后,回顾了Finemet合金的研究进展并展望其未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑皓天
王子龙
李翔
关键词:  Finemet  纳米晶合金  过渡族金属  结晶过程  磁性能    
Abstract: Amorphous alloys have many properties superior to traditional alloys, and many properties of amorphous alloys with nanocrystalline structure are fundamentally different from those of traditional crystalline alloys and amorphous alloys. As one of the most widely used amorphous alloys, iron-based amorphous alloys have more excellent soft magnetic properties after heat treatment. This high-performance functional alloy responds to the call of national energy conservation and emission reduction policy, and is a green product that focuses on the development of information, biology, energy, environmental protection, space and high technology in the 21st century.
In order to obtain nanocrystalline alloys with more excellent properties, many scholars have studied the effect of element substitution on nanocrystalline alloys in recent decades. However, the current research on nanocrystalline alloys is limited to iron-based amorphous alloys, and there is no exploration of amorphous alloys based on other elements. At the same time, the design of nanocrystalline alloy components is mostly based on empirical laws or exploratory experiments, and there is no unified consensus on the theoretical model for the design of alloy components.
Since the advent of Finemet alloy in 1988, in addition to a large number of attempts to improve its soft magnetic properties, researchers have also carried out continuous exploration on the formation mechanism of nanocrystals. It is found that the crystallization mechanism of Finemet alloy nanocrystals is mainly attributed to the interaction between Cu and Nb in the α-Fe(Si)matrix. Finemet series alloys have been applied in transformers and current transformers due to their low cost, high magnetic induction of Fe-based amorphous alloys, and low hysteresis loss and high permeability of Co-based amorphous alloys. At the same time, with the progress of society and the growing demand for green development, the research of Finemet alloy is no longer limited to the application in the transformer design. Researchers have done a lot of exploration on the giant magneto impedance effect, surface diversity and the development of composite materials, and have realized its application in military, information, energy and other industries.
Taking the classic Finemet alloy as an example, this paper summarizes the research on Finemet alloy by element replacement in recent years, and analyzes the influence of various elements on Finemet alloy. By analyzing the nanocrystalline crystallization process of Finemet alloy, the mechanism of various elements affecting the magnetic properties of nanocrystalline is classified. On this basis, a theoretical model for studying nanocrystalline magnetic alloy is proposed. Finally, the research progress and future development of Finemet alloys are reviewed.
Key words:  Finemet    nanocrystalline alloys    transition metals    crystallization process    magnetic properties
发布日期:  2022-04-07
ZTFLH:  TB38  
  TG131  
基金资助: 国家自然科学基金面上项目(52072245);上海自然科学基金面上项目(177ZR1419700)
通讯作者:  xiangli@usst.edu.cn   
作者简介:  郑皓天,2015年6月毕业于华北电力大学(北京),获得工学学士学位。现为上海理工大学材料科学与工程学院硕士研究生,在李翔副教授的指导下进行研究。目前主要研究领域为铁基非晶合金的性能。
李翔,上海理工大学副教授、硕士研究生导师。2010年4月毕业于同济大学材料学院,获工学博士学位。2010年4月至2011年10月于日本秋田大学工学资源部做博后及特任助教。2011年11月,在上海理工大学材料科学与工程学院任教。获国家自然科学基金、上海市自然科学基金、上海市优秀青年基金等项目的资助。专业方向和主要研究方向:材料科学与工程、纳米磁性材料、非晶和纳米晶功能材料。发表SCI论文50余篇。
引用本文:    
郑皓天, 王子龙, 李翔. 基于纳米晶结构的非晶合金成分设计[J]. 材料导报, 2022, 36(7): 20090031-7.
ZHENG Haotian, WANG Zilong, LI Xiang. Composition Design of Amorphous Alloy Based on Nanocrystalline Structure. Materials Reports, 2022, 36(7): 20090031-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090031  或          http://www.mater-rep.com/CN/Y2022/V36/I7/20090031
1 Azuma D, Ito N, Ohta M. Journal of Magnetism and Magnetic Materials, 2020, 501, 166373.
2 Gheiratmand T, Hosseini H R M. Journal of Magnetism and Magnetic Materials, 2016, 408, 177.
3 Yoshizawa Y, Oguma S, Yamauchi K. Journal of Applied Physics, 1988, 64(10), 6044.
4 Wang Y, Tian Y, Kirk T, et al. Acta Materialia, 2020, 194, 144.
5 Diercks D R, Singh A, Jha R, et al. Materials Characterization, 2020, 159, 110026.
6 Zhang K L, Wu K M, Xiang Q, et al. Journal of Iron and Steel Research, 2018,30(9),681(in Chinese).
张科林, 吴开明, 向前,等. 钢铁研究学报, 2018, 30(9), 681.
7 Pozo López G, Fabietti L M, Condó A M, et al. Journal of Magnetism and Magnetic Materials, 2010, 322(20), 3088.
8 Molokanov V V, Chueva T R, Umnov P P, et al. Russian Metallurgy (Metally), 2015, 2015(4), 290.
9 Shivaee H A, Hosseini H R M. Thermochimica Acta, 2009, 494(1),80.
10 Sinha A K, Singh M N, Upadhyay A, et al. Applied Physics A, 2015, 118(1), 291.
11 Herzer G. Journal of Magnetism and Magnetic Materials, 1993, 112(1-3), 258
12 Hu Y P, Ping K B, Yan Z J, et al. Acta Physica Sinica, 2011, 60(10), 642(in Chinese).
胡玉平, 平凯斌, 闫志杰,等. 物理学报, 2011, 60(10), 642
13 Gheiratmand T, Hosseini H R M, Davami P, et al. Journal of Magnetism and Magnetic Materials, 2015, 381,322.
14 Srinivas M, Majumdar B, Bysakh S, et al. Journal of Alloys and Compounds, 2014, 583, 427.
15 Li Y, Jia X, Xu Y, et al. Journal of Alloys and Compounds, 2017, 722, 859.
16 Smith C, Katakam S, Nag S, et al. Metallurgical and Materials Transactions A, 2014, 45(7),2998.
17 Moya J A. Journal of Alloys and Compounds, 2015, 622, 635.
18 Chen Z H, Yan B. Journal of Functional Materials and Devices, 2009,15(2),211(in Chinese).
陈智慧, 严彪. 功能材料与器件学报, 2009, 15(2), 211
19 Wang R W, Liu J, Zeng C, et al. Vacuum, 2014, 104,88.
20 Kolat V S, Bayri N, Michalik Š, et al. Journal of Non-Crystalline Solids, 2009, 355(52), 2562.
21 Zhu Q, Chen Z, Zhang S, et al. Journal of Magnetism and Magnetic Materials, 2019, 475, 88.
22 Xiao M, Zheng Z, Ji L, et al. Journal of Non-Crystalline Solids, 2019, 521, 119546.
23 Duan H, Wang Z, Xie Z, et al. Journal of Magnetism and Magnetic Materials, 2018, 460, 495.
24 Shivaee H A, Samadi M, Alihosseini H, et al. Thermochimica Acta, 2014, 575, 64.
25 Jia Y Y, Wang Z, Wang J, et al. Journal of Magnetism and Magnetic Materials, 2012, 324(23), 3981.
26 Tao J S, Ding Y H, Tian R J, et al. Materials Protection, 2013, 46(2), 58(in Chinese).
陶劲松, 丁燕红, 田瑞洁, 等. 材料保护, 2013, 46(2), 58.
27 Wang R W, Liu J, Wang Z, et al, Journal of Functional Materials, 2011, 42(3), 562(in Chinese).
汪汝武, 刘静, 王贞, 等. 功能材料, 2011, 42(3), 562.
28 Kolano-Burian A, Wlodarczyk P, Hawelek L, et al. Journal of Alloys and Compounds, 2014, 615,203.
29 Kataev V A, Starodubtsev Y N, Mikhalitsyna E A, et al. Physics of Metals and Metallography, 2017, 118(6), 558.
30 Mushnikov N V, Potapov A P, Shishkin D A, et al. The Physics of Metals and Metallography, 2015, 116(7),663.
31 Kurlyandskaya G V, Lukshina V A, Larrañaga A, et al. Journal of Alloys and Compounds, 2013, 566, 31.
32 Kiss L F, Franco V, Csontos M, et al. Journal of Magnetism and Magnetic Materials, 2011, 323(6), 699.
33 Dan Z, Zhang Y, Takeuchi A, et al. Journal of Alloys and Compounds, 2016, 683, 263.
34 Ji L, Zheng Z, Qiu Z, et al. Journal of Alloys and Compounds, 2018, 766, 391.
35 Wang R W, Liu J, Xu Y P, et al, Journal of Functional Materials, 2010, 41(12), 2109(in Chinese).
汪汝武, 刘静, 徐勇攀,等. 功能材料, 2010, 41(12), 2109.
36 Silveyra J M, Cremaschi V J, Janičkovič D, et al. Journal of Magnetism and Magnetic Materials, 2011, 323(3), 290.
37 Butvinová B, Butvin P, Kuzminski M, et al. Journal of Alloys and Compounds, 2015, 648, 527.
38 Puszkarz A, Wasiak M, Róz·ański A, et al. Journal of Alloys and Compounds, 2009, 491(1),495.
39 Chakraborty S, Mandal K, Sakar D, et al. Physica B: Condensed Matter, 2011, 406(10), 1915.
40 Luo T, Xu J, Wang G, et al. Journal of Magnetism and Magnetic Mate-rials, 2020, 505, 166714.
41 Silveyra J M, Illeková E. Journal of Alloys and Compounds, 2014, 610, 180.
42 Silveyra J M, Moya J A, Cremaschi V J, et al. Hyperfine Interactions, 2010, 195(1), 173.
43 Dehui J, Bingwen Z, Boyu J, et al. Physica Status Solidi (A), 2017, 214(10), e201700074.
44 Silveyra J M, Illeková E, Švec P, et al. Physica B: Condensed Matter, 2010, 405(12), 2720.
45 Xiao H, Wang A, Li J, et al. Journal of Alloys and Compounds, 2020, 821, 153487.
46 Tsepelev V S, Starodubtsev Y N, Wu K M. Journal of Crystal Growth, 2019, 528, 125256.
47 Yan Z J, Bian B R, Hu Y, et al. Journal of Magnetism and Magnetic Materials, 2010, 322(21),3359.
48 Jia Y, Wang Z, Wang F, et al. Materials Research Bulletin, 2018, 106,296.
49 Wang R W, Liu J, Xu Y P, et al. Physica B: Condensed Matter, 2010, 405(17), 3555.
50 Hono K, Hiraga K, Wang Q, et al. Acta Metallurgica Et Materialia, 1992, 40(9), 2137.
51 Liu T, Zhang H, Kong F, et al. Journal of Materials Research and Technology, 2020, 9(3), 3558.
52 Wang Y, Li X, Zhang Y, et al. Journal of Nanoscience and Nanotechno-logy, 2010, 10(11), 7485.
53 Shivaee H A, Golikand A N, Hosseini H R M, et al. Journal of Mate-rials Science, 2010, 45(2),546.
54 Yousefi M, Rahmani K, Amiri Kerahroodi M S. Journal of Magnetism and Magnetic Materials, 2016, 420, 204.
55 Butvinová B, Butvin P, Matko I, et al. Applied Surface Science, 2014, 301, 119.
56 Životsky O, Klimša L, Hendrych A, et al. Journal of Superconductivity and Novel Magnetism, 2013, 26(4), 1349.
57 Tinkov V A, Vasylyev M A, Galstyan G G. Vacuum, 2011, 85(6), 677.
58 Lan N T, Mercone S, Moulin J, et al. Journal of Magnetism and Magne-tic Materials, 2015, 373, 259.
59 Zhukova V, Talaat A, Ipatov M, et al. Journal of Electronic Materials, 2014, 43(12), 4540.
60 Talaat A, Zhukova V, Ipatov M, et al. Intermetallics, 2014, 51, 59.
61 Guo Y B, Zou J T, Li X, et al. Journal of Magnetism and Magnetic Materials, 2020, 513, 167080.
62 Kaloshkin S, Churyukanova M, Zadorozhnyi V, et al. Journal of Alloys and Compounds, 2011, 509, S400.
63 Wang T C, Zhu Y Y, Yao C W, et al. Materials for Mechanical Engineering, 2020, 44(5),54(in Chinese).
王天聪, 朱彦彦, 姚成武, 等.机械工程材料, 2020, 44(5), 54.
64 Shivaee H A, Hosseini H R M, Lotfabad E M, et al. Journal of Alloys and Compounds, 2009, 491(1), 487.
65 Li Z, Yao K, Li D, et al. Progress in Natural Science: Materials International, 2017, 27(5), 588.
66 Mikhalitsyna E A, Kataev V A, Larrañaga A, et al. Journal of Magne-tism and Magnetic Materials, 2016, 415, 61.
67 Brzózka K, Sovák P, Szumiata T, et al. Hyperfine Interactions, 2016, 237(1), 1.
[1] 张光睿, 姚特, 龚沛, 乔禹, 王婷婷, 梁雨萍, 郝宏波. (Fe81.5Co1.5Ga17)100-xTbx合金结构及其磁性能[J]. 材料导报, 2022, 36(5): 20120138-5.
[2] 潘琳茹, 李雪莲, 王丽, 孙禄涛, 魏彬彬, 郭春生. 覆铜热处理对Fe80Si9B11非晶铁芯软磁性能的影响:一种改善非晶铁芯温度分布的方法[J]. 材料导报, 2022, 36(3): 20090082-4.
[3] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[4] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[5] 彭伟良, 袁斌. 自支撑过渡族金属基电催化析氧材料在碱水电解中的理论基础、研究现状及发展趋势[J]. 材料导报, 2021, 35(9): 9174-9185.
[6] 刘元军, 王翊, 侯硕, 武翔, 赵晓明. 功能粒子种类对涂层涤棉织物电磁性能的影响[J]. 材料导报, 2021, 35(24): 24177-24181.
[7] 杨浩, 王成, 肖小波, 王晨, 陈俊锋, 汪炳叔, 张维林, 崔熙贵. 添加硼酸和钨酸铵对取向硅钢无铬绝缘涂层的影响[J]. 材料导报, 2021, 35(22): 22141-22145.
[8] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[9] 程灵, 韩钰, 马 光, 孟利, 杨富尧, 陈新, 董瀚. 特高压直流换流阀饱和电抗器用超薄取向硅钢涂层制备与性能评估[J]. 材料导报, 2020, 34(18): 18139-18144.
[10] 周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
[11] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[12] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[13] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[14] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[15] 刘涛, 马垒, 赵世谦, 马冬冬, 李林, 成钢. 沉积厚度对L10-FePd颗粒膜结构和磁性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 525-527.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed