Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 20120114-7    https://doi.org/10.11896/cldb.20120114
  无机非金属及其复合材料 |
BiFeO3多铁材料形貌与磁光性能调控研究
李增鹏1,2, 戴剑锋3, 成晨3, 冯伟3
1 兰州理工大学材料科学与工程学院省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
2 甘肃省太阳能发电系统工程重点实验室,酒泉职业技术学院,甘肃 酒泉 735000
3 兰州理工大学理学院,兰州 730050
Study and Control on the Morphology and Magneto-Optical Properties of BiFeO3 Multiferroic Materials
LI Zengpeng1,2, DAI Jianfeng3, CHENG Chen3, FENG Wei3
1 State Key Laborotary of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Key Laborotary of Solar Power System Engineering, Jiuquan Vocational and Technical College, Jiuquan 735000, Gansu, China
3 School of Science, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 5551KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铋铁氧体(BiFeO3)是在室温下同时具有铁电和铁磁性质的多铁性材料,在微电子、自旋电子学及光降解污染物等领域具有广泛的应用。为了研究不同形貌和尺寸对BiFeO3纳米材料磁光性能的影响,本工作采用静电纺丝法和水热法制备了BiFeO3(BFO)纳米纤维和纳米颗粒,利用X射线衍射仪、X射线光电子能谱仪、扫描电子显微镜、透射电子显微镜、物性测量系统、紫外-可见光谱仪以及多功能控温光化学反应仪对不同形貌、不同尺寸样品的物理和化学性质进行了表征。结果表明:与BiFeO3纳米颗粒相比,BiFeO3纳米纤维具有更小的晶粒尺寸(82~98 nm)和更大的比表面积,能够适度地增强剩余磁化强度(0.042 emu/g),使得BiFeO3纳米纤维的长周期自旋调制的螺旋反铁磁有序结构被破坏,表面未饱和的自旋对纳米纤维总磁矩的贡献变大,且较小的纳米尺度间接提升非补偿表面自旋效应,增强了晶粒间的交换耦合作用。光催化结果显示:具有棒状结构的纳米纤维具有更小的带隙(1.98 eV)、更大的甲基橙(MO)降解率(约63%)以及更高的光催化速率常数(k=0.011 61 min-1),能够有效地阻碍光生电子-空穴对的复合,增强了电荷分离效率;同时,具有较大比表面积的纳米纤维使得光催化剂表面的羟基增加,加快了BiFeO3纳米纤维羟基自由基的有效扩散,从而使染色剂分子更易接触催化剂表面区域,更易发生降解,从而具有更好的光催化性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李增鹏
戴剑锋
成晨
冯伟
关键词:  形貌  水热法  静电纺丝法  光催化  磁化强度    
Abstract: Bismuth ferrites (BiFeO3) are a surprising class of multiferroic materials owning to exhibit both ferroelectric and ferromagnetic properties at room temperature, which is widely used in applications including microelectronics, spintronics and photocatalytic activity. The pure BiFeO3 nanofiber and nanoparticle prepared by electrospinning and hydrothermal method respectively were reported for clarifying the influence of various morphologies and size on magneto-optical properties. The X-ray diffractometer, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, physical property measurement system, UV-Vis spectrophotometer and multi-function temperature control photochemical reaction instrument were used to characterize the physical and chemical properties of samples with different morphologies and sizes. Compared with the BiFeO3 nanoparticle, the coexistence of lower crystal size (82—98 nm) and larger specific surface ratio in BFO nanofiber had potential ability to improve the value of remanent magnetization (0.042 emu/g), which lead to destroy the long-period spin-modulated spiral antiferromagnetic order and enhanced the contribution of total magnetic moment. Meanwhile, it has been revealed that the non-compensated surface spin effect and exchange coupling effect were raised due to the lower nano-scale. On the one hand, it was efficiently inhibited the recombination rate of photogenerated e-/h+ pairs and enhanced the charge separation efficiency owning to those of BFO nanofiber possessed smaller bandgap (1.98 eV), larger methyl orange (MO) degradation rate (63%) and higher decomposition reaction constant (k=0.011 61 min-1). On the other hand, the enhancement of photocatalytic activity of BFO nanofiber with larger spectific surface area can be attributed to the increase of hydroxyl, which could be accelerate to the diffusion of hydroxyl radical, and making the dye molecules more accessibly turn into the catalyst surface area.
Key words:  morphology    hydrothermal method    electrospinning method    photocatalyst    magnetization
发布日期:  2022-06-09
ZTFLH:  O643  
基金资助: 国家自然科学基金(11664023); 甘肃省高等学校创新能力提升项目(2020B-375); 甘肃省青年科技基金项目(21JR7RF887);陇原青年创新创业团队项目(2020RCXM125)
通讯作者:  daijf@lut.cn   
作者简介:  李增鹏,兰州理工大学材料科学与工程学院博士研究生,酒泉职业技术学院副教授,酒泉市“领军人才”。2011年毕业于西北师范大学物理学专业,获理学学士学位,2014年毕业于四川师范大学理论物理专业,获理学硕士学位。主攻磁性纳米材料和光催化材料的制备与改性研究,先后主持甘肃省科技厅青年基金项目1项,甘肃省教育厅创新能力提升项目2项,参与省市级项目6项,发表文章10余篇,其中SCI/EI收录6篇。
戴剑锋,兰州理工大学理学院教授、博士研究生导师。1985年毕业于陕西师范大学物理系,获理学学士学位;1993年毕业于兰州大学现代物理系,获理学硕士学位;2006年,毕业于兰州理工大学材料科学与工程学院,获工学博士学位;2005年1月—2005年10月,在美国麻省理工学院纳米结构与制造中心访问研究;2005年11月—2006年3月,在美国普度大学纳米中心访问研究。主要研究方向为纳米碳材料富勒烯和纳米碳管的制备、性质及应用,金属纳米粉体的制备及性质等。先后主持完成国家自然科学基金面上项目2项,甘肃省科技攻关项目3项,甘肃省自然科学基金项目2项,机械部自然科学基金项目1项,在该领域发表学术论文70余篇,其中SCI/EI收录25篇,获授权国家发明专利1项。
引用本文:    
李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
LI Zengpeng, DAI Jianfeng, CHENG Chen, FENG Wei. Study and Control on the Morphology and Magneto-Optical Properties of BiFeO3 Multiferroic Materials. Materials Reports, 2022, 36(11): 20120114-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120114  或          http://www.mater-rep.com/CN/Y2022/V36/I11/20120114
1 Schmid H. Ferroelectrics, 1994,162,317.
2 Dhir G,Verma N K. Journal of Moleculr Structure,2020,1210,128055.
3 Nan C W, Bichurin M I,Dong S X, et al. Journal of Applied Physics, 2008, 103, 0311001.
4 Akram F, Kim J,Khan S A, et al. Journal of Alloys and Compounds, 2020, 818, 152878.
5 Zhong W,Sun C Q,Li S, et al. Acta Materialia, 2005, 53, 3207.
6 Pattnaik S P, Behera A, Martha S, et al. Journal of Nanoparticle Research, 2018, 20, 10.
7 Pajda M,Kudrnovsk J,Turek I, et al. Physical Review B, 2001, 64, 174402.
8 Klarbring J, SimakS I. Physical Review B, 2018, 97, 024108.
9 Singh A, Chen J. Ceramics International, 2019, 45, 20465.
10 Abidiguli S,Hoernisa I, Mamatrishat M, et al. Materials Reports A: Review Papers, 2019, 33(3), 791(in Chinese).
阿比迪古丽·萨拉木,吾尔尼沙·依明尼亚孜,买买提热夏提·买买提,等.材料导报:综述篇, 2019, 33(3), 791.
11 Hong N H, Huong N T, Kim T Y, et al. Journal of Physics Chemistry C, 2015, 119, 14351.
12 You X C. Journal of Chongqing University of Technology (Natural Science), 2020(6), 123(in Chinese).
游晓畅.重庆理工大学学报(自然科学),2020(6),123.
13 SolovyevI V,Pchelkina Z V. Physical Review B, 2010, 82(9), 094425.
14 Hait S, Ghose S,Mandal K. Journal of Alloys and Compounds, 2020, 822, 153614.
15 Niu F,Chen D, Qin L, et al. Solor Energy Materials and Solor Cells, 2015, 143, 386.
16 Li W, Ma S, Li Y,et al. Sensors and Actuators B-Chemical, 2015, 211, 392.
17 Chen X Z, Qiu Z C, Zhou J P, et al. Materials Chemistry and Physics, 2011, 126, 560.
18 Phong P T,Salazar-Kuri U,Van H T, et al. Journal of Alloys and Coumpounds, 2020, 823, 15387.
19 Kudo A, Tsuji I, Kato H. Chemical Communication, 2002,1(17), 1958.
20 Kim M R, Kang Y, Jang D. Journal of Physical Chemistry, 2007, 111, 18507.
21 Haruta M. Catal Today, 1997, 36, 153.
22 Yu J C, Yu J G, Ho W K, et al. Chemistry of Materials,2002,14,126.
23 Kaczkowski J. Journal of Materials Science, 2016, 51, 9761.
24 Jacobson A J, Fender B E F. Journal of Physical Chemistry C, 1975, 8, 84.
25 Gao T, Chen Z, Zhu Y X, et al. Materials Research Bulletin,2014,59,6.
26 Jia L,Wu C, Han S, et al. Journal of Alloys and Coumpounds, 2011, 509, 6067.
[1] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[2] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[3] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[4] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[5] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[6] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[7] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[8] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[9] 李园园, 蒲红争, 曾寒露, 蒋明珠, 任彦荣, 公祥南. Sn空位增强Li2SnO3光催化降解四环素的研究[J]. 材料导报, 2022, 36(10): 21030159-6.
[10] 翁盛槟, 陈晶晶, 周建强, 林晓亮. 磨粒刮擦铝膜的亚表层磨损机制纳观探究[J]. 材料导报, 2022, 36(1): 20110027-7.
[11] 李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
[12] 杜广智, 张骞, 廖继飞, 林玉, 伍凡, 向将来, 王晓如, 张瑞阳. 水热处理增强磷酸钴催化臭氧分解性能的研究[J]. 材料导报, 2021, 35(z2): 81-85.
[13] 董一苇, 徐祖顺, 杨婷婷, 高庆. 化学石膏制备α-半水石膏的研究进展[J]. 材料导报, 2021, 35(z2): 241-247.
[14] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[15] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed