Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21030140-8    https://doi.org/10.11896/cldb.21030140
  无机非金属及其复合材料 |
一步溶剂热法合成Bi2S3/BiOBr多级异质结及其增强可见光光催化去除RhB的研究
刘毅1,2, 冯紫娟1, 贾雯1, 吴雪1, 郑旭煦1, 袁小亚1,*
1 重庆交通大学材料科学与工程学院,重庆 400074
2 重庆交通大学河海学院,重庆 400074
One-step Solvothermal Synthesis of Bi2S3/BiOBr Hierarchical Heterojunction for Enhanced Visible-light Photocatalytic RhB Removal
LIU Yi1,2, FENG Zijuan1, JIA Wen1, WU Xue1, ZHENG Xuxu1, YUAN Xiaoya1,*
1 College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 14964KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,随着工业的高速发展,环境污染问题日益加剧。光催化作为一种节能环保、应用前景广阔的技术,已成为环境污染治理领域的研究热点。早期光催化剂以TiO2为主,但TiO2的活性只有在紫外光照下才能被激发,因此国内外逐渐发展了众多可见光可激发的光催化剂。其中,溴氧化铋(BiOBr)作为一种新型的层状结构光催化剂,因具有独特的光学性质和特殊的电子结构,近年来受到越来越多的关注。然而,纯BiOBr在可见光范围内的吸收能力并不理想,这极大地限制了它的实际应用。目前,与其他具有优异可见光吸收能力的半导体耦合是提升BiOBr光催化活性的一种有效方法。本研究首次采用硫化钠作为硫源,通过简单的一步溶剂热法合成了二元三维Bi2S3/BiOBr多级异质结球状光催化剂。使用X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)等手段表征了样品的结构与形貌。结构测试分析表明纳米花状的Bi2S3/BiOBr三维球体被成功制备,且二组分间形成了紧密的界面连接。对罗丹明B(RhB)的可见光光催化降解试验结果表明Bi2S3/BiOBr复合材料的催化性能高度依赖于Bi2S3的含量。12.5%-Bi2S3/BiOBr样品表现出对RhB最大去除能力。对降解效率进行了准一级动力学研究,拟合结果显示12.5%-Bi2S3/BiOBr的降解效率分别是纯BiOBr和纯Bi2S3的4.2倍和39.6倍。采用光致发光测试、光电流测试、电化学阻抗测试以及紫外可见光漫反射测试对降解机理进行了研究,Bi2S3/BiOBr复合材料光催化性能增强的主要原因是组分间形成了有效异质结结构,使得载流子分离效率提高,可见光吸收范围扩大。活性物种的淬灭实验表明RhB的降解主要来自空穴的氧化作用,其次是超氧基自由基的作用。通过能带计算及实验分析发现超氧自由基的形成与染料敏化有关。重复使用试验研究表明经多次循环降解后12.5%-Bi2S3/BiOBr样品仍表现出良好的稳定性和可重复使用性。因此,Bi2S3/BiOBr光催化剂还有望用于降解其他类型的有机污染物,在废水净化和环境修复领域有着潜在应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘毅
冯紫娟
贾雯
吴雪
郑旭煦
袁小亚
关键词:  Bi2S3/BiOBr  异质结  罗丹明B  可见光  光催化剂    
Abstract: In recent years, with the rapid development of industry, the problem of environmental pollution has become increasingly aggravated. Photocatalysis, as an energy-saving and environment-friendly technology with broad application prospects, has become a research hotspot in the field of environmental pollution treatment. In the beginning, the photocatalysts were mainly studied on TiO2, but the activity of TiO2 can only be excited under UV illumination, so numerous visible light excitable photocatalysts were gradually developed at home and abroad. Among them, bismuth bromide oxide (BiOBr) has been regarded as an innovative photocatalyst due to its unique optical properties and special electronic structure. However, the short wavelength range of visible light absorption of pure BiOBr is the bottleneck of its practical application. Nowadays, coupling with other semiconductors possessing excellent visible light absorption capacity has been considered an effective method to improve the photocatalytic performance of BiOBr phototalysts. In this study, an efficient binary three-dimensional spherical Bi2S3/BiOBr hierarchical heterostructure photocatalyst composed of lamellar BiOBr and rod-like Bi2S3 was constructed via a one-step solvothermal route. The obtained samples with different Bi2S3 contents were characterized by X-ray powder diffraction, scanning electron microscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The structural analysis showed that the nano-flower-like Bi2S3/BiOBr three-dimensional spheres were successfully prepared and a tight interfacial connection was formed between the two components. The photocatalytic tests revealed that the catalytic properties of the composites were highly dependent on the Bi2S3 content. Moreover, the 12.5%-Bi2S3/BiOBr composite exhibited the maximum activity for RhB degradation under visible light illumination, which was 4.2 times and 39.6 times higher than that of the BiOBr and Bi2S3 components, respectively. The mechanism of enhanced photocatalytic activity was proposed based on photoluminescence analysis, photocurrent measurements, electrochemical impedance and UV diffuse reflectance spectroscopy. The enhanced photocatalytic performance of the Bi2S3/BiOBr composites was mainly attributed to the formation of an effective heterojunction structure between the components, which led to an increase in carrier separation efficiency and an expansion of the visible light absorption range. The trapping experiments of active species showed that the degradation of RhB was mainly from the oxidation of cavities, followed by the action of superoxide radicals. The formation of superoxide radicals was found to be related to dye sensitization by energy band calculations and experimental analysis. The reusability test study showed that the 12.5%-Bi2S3/BiOBr samples still showed good stability and reusability after multiple cycles of degradation. Therefore, RhB removal by Bi2S3/BiOBr indicates the potential of the as-prepared composite to degrade other types of organic compounds for wastewater purification and environmental remediation applications.
Key words:  Bi2S3/BiOBr    heterojunction    Rhodamine B    visible light    photocatalysts
发布日期:  2023-01-03
ZTFLH:  X703  
基金资助: 国家自然科学基金(51402030);重庆市科委自然科学基金(cstc2017jcyjBX0028);重庆市教委科技研究计划(KJZD-K201800703)
通讯作者:  yuanxy@cqjtu.edu.cn   
引用本文:    
刘毅, 冯紫娟, 贾雯, 吴雪, 郑旭煦, 袁小亚. 一步溶剂热法合成Bi2S3/BiOBr多级异质结及其增强可见光光催化去除RhB的研究[J]. 材料导报, 2022, 36(24): 21030140-8.
LIU Yi, FENG Zijuan, JIA Wen, WU Xue, ZHENG Xuxu, YUAN Xiaoya. One-step Solvothermal Synthesis of Bi2S3/BiOBr Hierarchical Heterojunction for Enhanced Visible-light Photocatalytic RhB Removal. Materials Reports, 2022, 36(24): 21030140-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030140  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21030140
1 Meng X C, Zhang Z S. Journal of Molecular Catalysis A-Chemical, 2016, 423, 533.
2 Tong X, Cao X, Han T, et al. Nano Research, 2019, 12(7), 1625.
3 Huang Y C, Fan W J, Long B, et al. Applied Catalysis B-Environmental, 2016, 185, 68.
4 Cao S W, Yin Z, Barber J, et al. ACS Applied Materials & Interfaces, 2012, 4(1), 418.
5 Zhang Z, Wang W, Shang M, et al. Catalysis Communications, 2010, 11(11), 982.
6 Shao Z, Zeng T, He Y, et al. Chemical Engineering Journal, 2019, 359, 485.
7 Zou Z, Ye J, Sayama K, et al. Nature, 2001, 414(6864), 625.
8 Cheng H, Huang B, Dai Y. Nanoscale, 2014, 6(4), 2009.
9 Di J, Xia J X, Li H M, et al. Nano Energy, 2017, 41, 172.
10 Majhi D, Das K, Mishra A, et al. Applied Catalysis B: Environmental, 2020, 260, 118222.
11 Zhao G Q, Zheng Y J, He Z G, et al. Transactions of Nonferrous Metals Society of China, 2018, 28(10), 2002.
12 Li B S, Lai C, Zeng G M, et al. Acs Applied Materials & Interfaces, 2018, 10(22), 18824.
13 Vesali-Kermani E, Habibi-Yangjeh A, Diarmand-Khalilabad H, et al. Journal of Colloid and Interface Science, 2020, 563, 81.
14 Lai K, Wei W, Dai Y, et al. Rare Metals, 2011, 30(SUPPL. 1), 166.
15 Ye L Q, Su Y R, Jin X L, et al. Environmental Science-Nano, 2014, 1(2), 90.
16 Huo Y, Zhang J, Miao M, et al. Applied Catalysis B: Environmental, 2012, 111-112, 334.
17 Zhu S R, Qi Q, Fang Y, et al. Crystal Growth & Design, 2018, 18(2), 883.
18 Cao L, Ma D, Zhou Z, et al. Chemical Engineering Journal, 2019, 368, 212.
19 Cao J, Xu B, Luo B, et al. Catalysis Communications, 2011, 13(1), 63.
20 Wang J, Tang L, Zeng G, et al. ACS Sustainable Chemistry & Enginee-ring, 2017, 5(1), 1062.
21 Cui Z, Song H, Ge S, et al. Applied Surface Science, 2019, 467-468, 505.
22 Li J, Yang F, Zhou Q, et al. Journal of Colloid and Interface Science, 2019, 546, 139.
23 Wang X J, Yang W Y, Li F T, et al. Journal of Hazardous Materials, 2015, 292, 126.
24 Yang L, Liang L, Wang L, et al. Applied Surface Science, 2019, 473, 527.
25 Ren X, Wu K, Qin Z, et al. Journal of Alloys and Compounds, 2019, 788, 102.
26 Bao H, Li C M, Cui X, et al. Small, 2008, 4(8), 1125.
27 Sun B, Dong J, Shi W J, et al. Sensors and Actuators B: Chemical, 2016, 229, 75.
28 Liu W, Guo C F, Yao M, et al. Nano Energy, 2014, 4, 113.
29 Sigman M B, Korgel B A. Chemistry of Materials, 2005, 17(7), 1655.
30 Vogel R, Hoyer P, Weller H. The Journal of Physical Chemistry, 1994, 98(12), 3183.
31 Zhang J, Zhang L, Yu N, et al. RSC Advances, 2015, 5(92), 75081.
32 Shi Y, Xiong X, Ding S, et al. Applied Catalysis B: Environmental, 2018, 220, 570.
33 Zhang Z, Wang W, Wang L, et al. ACS Applied Materials & Interfaces, 2012, 4(2), 593.
34 Yuan X Y, Wu X, Feng Z J, et al. Catalysts, 2019, 9(7), 14.
35 Cui Y M, Jia Q F, Li H Q, et al. Applied Surface Science, 2014, 290, 233.
36 Xu F, Xu C Y, Wu D P, et al. Materials Letters, 2019, 253, 183.
37 Imam S S, Adnan R, Kaus N H M. Colloids and Surfaces A-Physicoche-mical and Engineering Aspects, 2020, 585, 124069.
38 Rashid J, Abbas A, Chang L C, et al. Science of the Total Environment, 2019, 665, 668.
39 Zhu S R, Qi Q, Zhao W N, et al. Journal of Physics and Chemistry of Solids, 2018, 121, 163.
40 Song M, Du M, Liu Q, et al. Catalysis Today, 2019, 335, 193.
41 Low J, Yu J, Jaroniec M, et al. Advanced Materials, 2017, 29(20), 1601694.
42 Zhang X, Ai Z, Jia F, et al. The Journal of Physical Chemistry C, 2008, 112(3), 747.
43 Zhang M, Lai C, Li B, et al. Journal of Catalysis, 2019, 369, 469.
44 Li S, Wang Z, Xie X, et al. Journal of Hazardous Materials, 2020, 391, 121407.
45 Wang W, Huang F, Lin X, et al. Catalysis Communications, 2008, 9(1), 8.
46 Su X, Wu D. Journal of Industrial and Engineering Chemistry, 2018, 64, 256.
47 Jia Z, Chen W, Liu T, et al. Journal of Wuhan University of Technology(Materials Science Edition), 2016, 31(4), 765.
48 Hong Y, Li C, Zhang G, et al. Chemical Engineering Journal, 2016, 299, 74.
49 Liu B, Ye L, Wang R, et al. ACS Applied Materials & Interfaces, 2018, 10(4), 4001.
50 Moniz S J A, Shevlin S A, Martin D J, et al. Energy & Environmental Science, 2015, 8(3), 731.
51 Liu Y, Zhang P, Lyu H, et al. RSC Advances, 2015, 5(102), 83764.
52 Feng Z, Lian D, Wu X, et al. RSC Advances, 2020, 10(5), 2734.
53 Wei W, Tian Q, Sun H, et al. Applied Catalysis B: Environmental, 2020, 260, 118153.
54 Wang Z, Wang K, Li Y, et al. Applied Surface Science, 2019, 498, 143850.
55 Nasr C, Vinodgopal K, Fisher L, et al. The Journal of Physical Chemistry, 1996, 100(20), 8436.
56 Lin X, Huang T, Huang F, et al. Journal of Materials Chemistry, 2007, 17(20), 2145.
57 Shen K, Gondal M A, Xu Q, et al. Journal of Advanced Oxidation Technologies, 2014, 17(1), 121.
58 Chang X, Gondal M A, Al-Saadi A A, et al. Journal of Colloid and Interface Science, 2012, 377(1), 291.
[1] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[2] 刘珂, 张宝煊, 黄光胜, 蒋斌, 汤爱涛, 潘复生. 控制挤压比制备的AZ91异构镁合金的组织与力学性能[J]. 材料导报, 2022, 36(20): 21050132-7.
[3] 蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 22030040-7.
[4] 修明清, 李天昕, 张国家, 邹龙江, 卢一平. 谐波异质结构AlCoCrFeNi高熵合金的制备、组织演化与力学性能[J]. 材料导报, 2022, 36(14): 22030309-5.
[5] 甘建昌, 胡海平, 苏明, 陈锋, 王辉虎. 金属硫化物/g-C3N4异质结的构建及其光催化性能改善与应用[J]. 材料导报, 2022, 36(10): 20100188-10.
[6] 陈晓平, 楼玉民, 赵宁宁, 黄一君, 胡海龙, 岳建岭. 基于异质结构忆阻器的研究进展[J]. 材料导报, 2022, 36(10): 20070058-10.
[7] 向阳, 熊昆, 张海东, 陈佳, 余林键. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-8.
[8] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[9] 胡绍争, 王菲, 李政, 马宏飞, 李萍. 新型全光谱响应W18O49/g-C3N4异质结催化剂的构建及光催化降解有机染料性能研究[J]. 材料导报, 2021, 35(8): 8011-8016.
[10] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[11] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[12] 贾雯, 袁小亚, 冯紫娟, 吴雪, 彭冬, 刘毅. 一锅法合成缺陷型Bi/BiOBr纳米复合材料及其可见光驱动去除水体六价铬离子和有机染料的研究[J]. 材料导报, 2021, 35(24): 24032-24040.
[13] 丁同悦, 陈奕桦, 胡俊俊, 杨本宏, 黄智锋. CeO2/Bi24O31Br10异质结构的制备及可见光催化性能[J]. 材料导报, 2021, 35(22): 22011-22015.
[14] 赵亚丽, 贾琨, 赵岩, 马玉峰, 李旭峰. 金属光子晶体结构对其透光率强度和曲线宽度的影响[J]. 材料导报, 2021, 35(14): 14171-14175.
[15] 刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed