Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14171-14175    https://doi.org/10.11896/cldb.20020155
  金属与金属基复合材料 |
金属光子晶体结构对其透光率强度和曲线宽度的影响
赵亚丽1, 贾琨2, 赵岩1, 马玉峰2, 李旭峰3,*
1 晋中学院数理学院,榆次 030606
2 中国电子科技集团公司第三十三研究所, 太原 030006
3 太原科技大学应用科学学院,太原 030024
Effect of Metal Photonic Crystal Structure on Its Transmittance Intensity and Width
ZHAO Yali1, JIA Kun2, ZHAO Yan1, MA Yufeng2, LI Xufeng3,*
1 School of Mathmatics and Phsics,Jinzhong University, Yuci 030606, China
2 No.33 Research Institute of China Electronics Technology Group Corporation, Taiyuan 030006, China
3 School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 3629KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将金属光子晶体(Metal photonic crystals, MPCs)应用于电子设备的可视部位,有望实现可视和电磁屏蔽的兼容。如何在不降低金属膜厚比的前提下,同时提高和拓宽MPCs的可见光透光率强度和宽度是目前需解决的关键问题。鉴于此,本工作构建了由金属Ag和In2O3:SnO2(ITO)膜呈周期分布的MPCs,采用时域有限元差分法(Finite difference time domain, FDTD)和Bragg衍射定律分别研究了其周期对其透光率影响规律和物理机制。研究结果表明,高透光的MPCs周期(即相邻的ITO和Ag膜厚之和)需大于58 nm。同时,通过FDTD对MPCs的SPP (Surface plasmon polariton)能带计算,发现ITO膜为40 nm时,SPP较弱,致使可见光透光率较低。随金属膜厚比降低,SPP色散能带相应变宽,可见光透光率曲线相应变宽。本工作提出一种(pqp)N型MPCs,采用该结构可同时提高MPCs的可见光透光率强度和拓宽其宽度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵亚丽
贾琨
赵岩
马玉峰
李旭峰
关键词:  金属光子晶体  膜表面等离子激元  可见光透光率  透光率强度    
Abstract: Metal photonic crystals (MPCs) could potentially be used in the visible part of electronic devices, which is expected to achieve the compatibility of visible and electromagnetic shielding. The fundamental challenge for its application is achieving the ideal combination of both high and broad band transmittance without decreasing the metal film thickness ratio. In this paper, finite difference time difference domain (FDTD) and Bragg diffraction law were used to investigate the influence of MPCs period on transmittance. The results suggested that the period greater than 58 nm is essential for high optical transmittance. When the thickness of each layer ITO is 40 nm, optical transmittance of MPCs is lower due to lower energy of surface plasmon polariton (SPP). With decreasing of the metal film thickness ratio, the energy band of SPP widen accordingly. Accordingly, the optical transmittance line also widen. In this paper, the MPCs is proposed with type of (pqp) N, both the intensity and width of optical transmittance line are improved by adopting it.
Key words:  metal photonic crystals    surface plasmon polariton    optical transmittance    intensity of optical transmittance
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TQ594  
  171.7  
  156.2  
基金资助: 山西省高等学校科技创新项目(2020L0575;2020L0594);晋中学院博士基金启动项目(jzxybsjjxm2019039;jzxybsjjxm2019021);晋中市科技重点研发项目(Y201027)
通讯作者:  * xfli@tyust.edu.cn   
作者简介:  赵亚丽,晋中学院,副教授。2018年12月毕业于山西大学化学化工学院,应用化学博士专业位。2019年8月加入晋中学院工作至今,主要从事超构材料的制备及应用研究。在国内外重要期刊发表文章30多篇,申报发明专利10项左右。
李旭峰,太原科技大学应用科学学院,副教授。2011年6月毕业于大连理工大学,获光学博士学位,同年加入太原科技大学应用科学学院工作至今,主要从事表面增强拉曼散射(SERS)和亚波长光学的研究。在国内外重要期刊发表文章20多篇。
引用本文:    
赵亚丽, 贾琨, 赵岩, 马玉峰, 李旭峰. 金属光子晶体结构对其透光率强度和曲线宽度的影响[J]. 材料导报, 2021, 35(14): 14171-14175.
ZHAO Yali, JIA Kun, ZHAO Yan, MA Yufeng, LI Xufeng. Effect of Metal Photonic Crystal Structure on Its Transmittance Intensity and Width. Materials Reports, 2021, 35(14): 14171-14175.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020155  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14171
1 Wang H, Lu Z, Tan J. Optics Express, 2016, 24(20), 22989.
2 Cho I, Yong J, Su C, et al. Applied Surface Science, 2013, 269, 92.
3 Yu H, Liu Y, Lin H, et al. Carbon, 2017, 115, 34.
4 Hu M, Gao J, Dong Y, et al. Langmuir the ACS Journal of surfaee & colloids, 2012,28(18),7101.
5 ManiyaraR A, Mkhitaryan V K, Chen T, et al. Nature Communications, 2016, 7, 13771,
6 Jacob M V, Hartnett J G, Mazierska J, et al. Conference on Convergent Technologies for Asia-Pacific Region. IEEE, 2004, 45(4), 586.
7 Zhao Y L, Jia K, Zhang H, et al. Opto-Electronic Engineering, 2017, 44(2),226 (in Chinese).
赵亚丽, 贾琨, 张晗, 等.光电工程, 2017, 44(2),226.
8 Zhao Y L, Ma F H, Li X F, et al. Chinese. Physics. B, 2018,27(2),027302.
9 Padha S K, XIAO B, SKUZA J R, et al. Optics Express, 2014, 22 (10),12486.
10 Zhao Y L, Li X F, Ma J J, et al. Superlattice Microstructure,2017,112,596.
11 Zhao Y L, Ma F H, Jia K, et al. Journal of Luminescence, 2019, 40 (8), 1001 (in Chinese).
赵亚丽, 马富花, 贾琨, 等.发光学报, 2019, 40(8), 1001.
12 Xiao H P, Wang Y, Guo G J, et al. Optics and photoelectric technology, 2017, 15(5), 85 (in Chinese).
肖和平, 王宇, 郭冠军.光学与光电技术, 2017, 15(5), 85.
13 Zhao Y L, Ma F H, Lv D T, et al. Applied Chemical Industry, 2013, 42 (4), 634 (in Chinese).
赵亚丽, 马富花, 吕德涛, 等.应用化工, 2013,42(4), 634.
14 Yee K S. Trans. Antennas Propagation,1966, 14(3), 302.
15 Oskooi A F, Roundy D, Ibanescu M, et al. Computer Physics Communications, 2010,181, 687.
16 Pendry J B. Journal of Physics Condensed Matter,1996, 8(9), 1085.
17 Palik E. Handbook of optical constants of solids. Academic Press, USA, 1985.
18 Cai W S, Shalacv V. Optical metamaterials. Springer, Germany, 2010.
19 Avrutsky I , Salakhutdinov I, lser J, et al. Physics Review B, 2007, 75(24), 241402.
20 Zhao Y L, Ma F H, Jiang B, et al. Optics and Precision Engineering, 2015, 23(6), 1516 (in Chinese).
赵亚丽, 马富花, 江波等.光学精密工程,2015, 23(6), 1516.
21 Liu Y, Qi X, Lv Y, et al. Physics Letters A, 2016, 380, 322.
22 Zhao Y L, Li X F, Jia K, et al. Opto-Electronic Engineering, 2018, 45(11), 180239.
23 Liu Y Y, Li X F, Zhao Y L, et al. Laser & Optoelectronics Progress, 2018, 55, 0513103 (in Chinese).
刘圆圆, 李旭峰, 赵亚丽, 等.激光与光电子进展, 2018, 55, 0513103.
No related articles found!
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed