Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 20100135-9    https://doi.org/10.11896/cldb.20100135
  无机非金属及其复合材料 |
g-C3N4/过渡金属硫化物复合材料的结构设计、合成及光催化应用
唐飞1,2, 蔡文宇1,2, 陈飞1,2, 朱晨1,2, 刘成宝1,2,3,*, 陈志刚1,2
1 苏州科技大学江苏省环境功能材料重点实验室,江苏 苏州 215009
2 苏州科技大学材料科学与工程学院,江苏 苏州 215009
3 苏州科技大学江苏水处理技术与材料协同创新中心,江苏 苏州 215009
Structural Design, Synthesis and Photocatalytic Applications of g-C3N4/Transition Metal Sulfide Composite Material
TANG Fei1,2, CAI Wenyu1,2, CHEN Fei1,2, ZHU Chen1,2, LIU Chengbao1,2,3,*, CHEN Zhigang1,2
1 Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu,China
2 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009,Jiangsu,China
3 Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu,China
下载:  全 文 ( PDF ) ( 10924KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种无机非金属半导体光催化材料,石墨相氮化碳(g-C3N4)由于具有独特的能带结构和晶体结构特征,在环境治理和清洁能源领域受到了广泛的关注。然而单一相g-C3N4存在对太阳光的响应范围偏小、比表面积小、反应活性位点少和光生电子-空穴对易复合等问题,限制了其在光催化领域的大规模使用。过渡族金属硫化物具有特殊的能带结构和优异的物理化学性质,在光催化应用中表现出较大的发展潜力。基于光催化材料当前存在的光响应范围窄、光生载流子易于复合导致光催化量子效率低、光生载流子存续时间短和反应活性位不足等问题,研究者们普遍专注于异质结尤其是Z型异质结的构建,以期解决上述问题。本文综述了g-C3N4和过渡金属硫化物光催化材料的性能优缺点、结构设计及反应机理等,重点梳理了异质结的构建进展情况,并展望了g-C3N4/过渡金属硫化物复合材料的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐飞
蔡文宇
陈飞
朱晨
刘成宝
陈志刚
关键词:  催化材料  光催化  光化学  纳米材料  g-C3N4  过渡金属硫化物    
Abstract: Graphite carbonnitride (g-C3N4), as an inorganic non-metallic semiconductor photocatalytic material, comprises a special energy band and crystal structure, which receives extensive attention in environmental governance and clean energy. However, the single-phase g-C3N4 has disadvantages of small response range to natural light, small specific surface area, few reactive sites, and high recombine efficiency of photoelectron-hole pairs, which limit its large-scale utilization in the field of photocatalysis. Transition metal sulfides have a special energy band structure, and excellent physical and photocatalytic properties, which show great development potential in photocatalytic applications. There were numerous researches generally focused on the construction of heterojunctions to solve the problems that catalytic materials has, such as narrow optical response range, low photocatalytic quantum efficiency due to the easy combination of carriers, short duration of carriers and insufficient reactive sites. Herein, the performance, structure design and reaction mechanism of the g-C3N4/transition metal sulfide photocatalytic materials were reviewed, the progress of the heterogeneous junction construction was discussed, and the development prospect of the g-C3N4/transition metal sulfide composite materials was prospected.
Key words:  catalytic material    photocatalysis    photochemistry    nanomaterial    g-C3N4    transition metal sulfide
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TB333  
基金资助: 江苏省自然科学基金(BK20180103;BK20180971);江苏省高校自然科学基金(16KJA430008);江苏省高校优势学科建设工程资助项目;苏州市科技发展计划项目 (SYG201742;SYG201818;SS202036);苏州市微纳光电材料与传感器重点实验室(SZS201812);江苏省研究生实践创新计划(SJCX20_1107)
通讯作者:  * 刘成宝,苏州科技大学材料科学与工程学院副教授、硕士研究生导师。2004年本科毕业于江苏大学无机非金属材料工程专业,2007年获江苏大学材料学专业工学硕士学位,2010年获江苏大学材料学专业工学博士学位。2018年在美国罗格斯大学材料科学与工程系担任为期一年的访问学者。2016年8月被遴选为江苏省第五期“333高层次人才培养工程”中青年学术技术带头人。主要从事二维基催化材料、量子点材料和环境功能材料等的结构设计、合成及其环境和能源性能评价。已在Ceramics InternationalJournal of Alloys and CompoundsJournal of Rare Earths等国内外重要期刊发表学术论文100余篇,其中SCI收录70余篇;申请国家发明专利18项,其中已获授权12项。lcb@mail.usts.edu.cn   
作者简介:  唐飞,2015年6月毕业于江苏理工学院,获得工学学士学位。现为苏州科技大学化学与生命科学学院硕士研究生,在刘成宝副教授的指导下进行研究。目前主要研究领域为二维基环境功能材料的结构设计及其性能评价。
引用本文:    
唐飞, 蔡文宇, 陈飞, 朱晨, 刘成宝, 陈志刚. g-C3N4/过渡金属硫化物复合材料的结构设计、合成及光催化应用[J]. 材料导报, 2023, 37(1): 20100135-9.
TANG Fei, CAI Wenyu, CHEN Fei, ZHU Chen, LIU Chengbao, CHEN Zhigang. Structural Design, Synthesis and Photocatalytic Applications of g-C3N4/Transition Metal Sulfide Composite Material. Materials Reports, 2023, 37(1): 20100135-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100135  或          http://www.mater-rep.com/CN/Y2023/V37/I1/20100135
1 Kabir E, Kumar P, Kumar S, et al. Renewable and Sustainable Energy Reviews, 2018, 82(1), 894.
2 Zhu D D, Zhou Q X. Environmental Nanotechnology, Monitoring & Management, 2019, 12, 100255.
3 Wei Z D, Xu M Q, Liu J Y, et al. Chinese Journal of Catalysis, 2020, 41(1), 103.
4 Huang D X, Huang L R, Hong W. Semiconductor Optic Electronics, Publishing House of Electronic Science, China, 2018(in Chinese).
黄德修, 黄黎蓉, 洪伟. 半导体光电子学, 电子科学出版社, 2018.
5 Wen J Q, Xie J, Chen X B, et al. Applied Surface Science, 2017, 391(B), 72.
6 Fu Y H, Li Z J, Liu Q Q, et al. Chinese Journal of Catalysis, 2017, 38(12), 2160.
7 Wang Y, Jiang Q, Shang J K, et al. Chinese Journal of Physical Chemistry, 2016, 32(8), 1913.
8 Liu Y A, Shen C C, Jiang N, et al. ACS Catalyst, 2017, 7, 8228.
9 Wang X C, Maeda K, Arne T, et al. Nature Materials, 2009, 8(1), 76.
10 Arne T, Fischer A, Goettmann F, et al. Journal of Materials Chemistry, 2008, 18(41), 4893.
11 Ali I, Park S, Kim J G. Journal of Alloys and Compounds, 2020, 821, 153498.
12 Acharya R, Parida K. Journal of Environmental Chemical Engineering, 2020, 8(4), 103896.
13 Aaron W, Kirby D. Solid state chemistry: synthesis, structure, and pro-perties of selected oxides and sulfides, Chapman & Hall Inc, USA, 1993.
14 Dai X, Xie M L, Meng S G, et al. Applied Catalysis B: Environmental, 2014, 158, 382.
15 Shi C, Chan K R, Yoo J S, et al. Organic Process Research & Development, 2016, 20(8), 1424.
16 Lei X F, Xu T H, Yao W F, et al. Journal of the Taiwan Institute of Chemical Engineers, 2020, 106, 148.
17 Wang C, Zhai J L, Jiang H, et al. Solid State Sciences, 2019, 98, 106020.
18 Guo R, Yan A G, Xu J J, et al. Journal of Alloys and Compounds, 2020, 817, 153246.
19 Li G M, Wang B, Zhang J, et al. Applied Surface Science, 2019, 478, 1056.
20 Janbanhu S, Munishiwar S R, Sukhadeve G K, et al. Materials Characterization, 2019, 152, 230.
21 Zhang B Y, Chen C Q, Liu J, et al. Applied Surface Science, 2020, 508, 144869.
22 Shi F E, Chen L L, Xing C S, et al. RSC Advances, 2014, 4(107), 62223.
23 Ocak I, Kara H E S. Journal of Luminescence, 2018, 197, 112.
24 Pikula K, Mintcheva N, Kulinich A S, et al. Environmental Research, 2020, 186, 109513.
25 Tie R, Sun R Y, Jiang H, et al. Journal of Alloys and Compounds, 2019, 807, 151670.
26 Dong Z F, Wu Y, Thirangnanam N, et al. Applied Surface Science, 2018, 430, 293.
27 Radisavljevic B, Radenovic A, Brivio J, et al. Nature Nanotechenology, 2011, 6, 147.
28 Li G, Tan F X, Lv B K, et al. Optics Communications, 2018, 406, 112.
29 Dong J N, Huang J Y, Wang A, et al. Nano Energy, 2020, 71, 104579.
30 Rou J T, Sofer Z, Jan J, et al. Chemical Communications, 2017, 53, 3054.
31 Zhang Z B, Liu C, Dong Z M, et al. Applied Surface Science, 2020, 520, 146352.
32 Sun J W, Yang S R, Liang J Q, et al. Journal of Colloid and Interface Science, 2020, 567, 300.
33 Velmurugana S, Balua S, Palanisamy S, et al. Applied Surface Science, 2020, 500, 143991.
34 Zhang Q L, Chen P F, Chen L, et al. Journal of Colloid and Interface Science, 2020, 568, 117.
35 Khan A, Alam U, Rara W, et al. Journal of Physics and Chemistry of Solids, 2018, 115, 59.
36 Yao H D, Wang X X, Gao J P, et al. Materials Chemistry and Physics, 2019, 223, 648.
37 Fu Q, Cao C B, Zhu H S. Journal of Materials Science Letters, 1999,18, 1485.
38 Li C, Cao C B, Zhu H S, et al. Materials Science and Engineering: B, 2004, 106(3), 308.
39 Govindaraju G V, Wheeler G P, Lee D H, et al. Chemistry of Materials, 2017, 29(1), 355.
40 Wang R N, Yan J, Zu M, et al. Electrochimica Acta, 2018, 279, 74.
41 Satterfield C N. Heterogeneous catalysis in practice, Mc Graw-Hill Inc., US, 1980.
42 Liang G Z, Muhammad W, Yang B, et al. Applied Surface Science, 2020, 504, 144448.
43 Tian L, Yang X F, Cui X K, et al. Applied Surface Science, 2019, 463, 9.
44 Lyu H, Wu X X, Liu Y M, et al. Materials Letters, 2019, 236, 690.
45 Xue B, Jiang H Y, Sun T, et al. Materials Letters, 2018, 228, 475.
46 Lin B, Li H, Hua A, et al. Applied Catalysis B: Environmental, 2018, 220, 542.
47 Yuan Y P, Xu W T, Yin L S, et al. International Journal of Hydrogen Energy, 2013, 38(30), 13159.
48 Li H T, Wang M, Wei Y P, et al. Journal of Colloid and Interface Science, 2019, 534, 343.
49 Wang W, Fang J J. Ceramics International, 2020, 46(2), 2384.
50 Rameshbabu R, Parnapalle R, Sathish M. Chemical Engineering Journal, 2019, 360, 1277.
51 She X J, Liu L, Ji H Y, et al. Applied Catalysis B: Environmental, 2016, 187, 144.
52 Kang J, Jin C Y, Li Z L, et al. Journal of Alloys and Compounds, 2020, 825, 153975.
53 Jin C Y, Li Z L, Zhang Y, et al. Separation and Purification Technology, 2019, 224, 33.
54 Cao S W, Yuan Y P, Fang J, et al. International Journal of Hydrogen Energy, 2013, 38(3), 1258.
55 Lu X Y, Xie J, Chen X B, et al. Applied Catalysis B: Environmental, 2019, 252, 250.
56 Busiakiewicz A, Kisielewska A, Piwonski I, et al. Applied Surface Science, 2017, 401, 378.
57 Neris A M, Schereiner W H, Saladar C, et al. Materials Science & Engineering B, 2018, 229, 218.
58 Lai C Q, Cheng H, Choi W K, et al. Journal of Physical Chemistry C, 2013, 117(40), 20802.
59 Zhang K, Guo L J. Catalysis Science & Technology, 2013, 3(7), 1672.
60 Valentin D C, Pachhioni G, Selloni A, et al. Journal of Physical Chemistry B, 2005, 109(23), 11414.
61 Ye L J, Wang D, Chen S J. ACS Applied Meterials & Interfaces, 2016, 8, 5280.
62 Tan W H, Li T, Jiang F, et al. China Environmental Science, 2014, 34(12), 3099.
63 Shi L, Ding W, Yang S P, et al. Journal of Hazardous Materials, 2018, 347, 431.
64 Buzzetti L, Crisenza G E M, Melchiorre P. Angewandte Chemie International Edition, 2019, 58(12), 3730.
65 Hong Y Z, Jiang Y H, Li C S, et al. Applied Catalysis B: Environmental, 2016, 180, 663.
66 Lu D Z, Wang H M, Zhao X N, et al. ACS Sustainable Chemistry & Engineering, 2017, 5, 1436.
67 He Y Q, Ma Z Y, Junior L B. Ceramics International, 2020, 46(8), 12364.
68 Cui W, Chen L C, Sheng J P, et al. Applied Catalysis B: Environmental, 2020, 262, 118251.
69 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
70 Chen M F, Zhao X M, Li Y F, et al. Chemical Engineering Journal, 2020, 385, 123905.
71 Huang M L, Xu C F, Wu Z B, et al. Dyes and Pigments, 2008, 77(2), 327.
72 Zhai C Y, Sun M J, Zeng L X, et al. Applied Catalysis B: Environmental, 2019, 243, 283.
73 Hu K M, Zhang W M, Zhong Z Y, et al. Physics Letters A, 2014, 378(7/8), 650.
74 Li J. Synthesis and photocatalytic performace of g-C3N4-based composites. Master’s Thesis, Northwest University, China, 2017(in Chinese).
李娟. g-C3N4基复合光催化材料的制备与性能研究. 硕士学位论文, 西北大学, 2017.
75 Yang X X, Xin W Y, Yin X H, et al. Chemical Physics Letters, 2016, 651, 127.
76 Huo Y, Zhang J F, Dai K, et al. Applied Catalysis B: Environmental, 2019, 241, 528.
77 Sun Z X, Wang H Q, Wu Z B, et al. Catalysis Today, 2018, 300, 160.
[1] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[2] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[3] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[4] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[5] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[6] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[7] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[8] 丁梅鹃, 史慧芳, 安众福. 有机室温磷光材料在生物医学中的应用[J]. 材料导报, 2022, 36(3): 22010004-11.
[9] 刘毅, 冯紫娟, 贾雯, 吴雪, 郑旭煦, 袁小亚. 一步溶剂热法合成Bi2S3/BiOBr多级异质结及其增强可见光光催化去除RhB的研究[J]. 材料导报, 2022, 36(24): 21030140-8.
[10] 杨振清, 项文丽, 矫玉秋, 王郭晨, 于月宁, 徐慧英, 邵长金. 均相光催化制氢体系有机染料光敏剂的研究进展[J]. 材料导报, 2022, 36(24): 20100177-15.
[11] 黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
[12] 蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 22030040-7.
[13] 陈龙, 刘兆利, 杨旭东, 张偌涵, 孙玮良, 刘文. 纳米材料光催化灭活新型冠状病毒SARS-CoV-2研究进展与启示[J]. 材料导报, 2022, 36(20): 22100084-12.
[14] 张慧敏, 单展, 王宏, 张晓艳. 球状钼酸钙在可见光下选择性光催化降解废水中的抗生素[J]. 材料导报, 2022, 36(19): 22010249-7.
[15] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed