Abstract: Graphene has extremely high thermal conductivity due to its property of relying on phonons for heat conduction. Both theoretical and experimental studies have proved that the thermal conductivity of monolayer graphene can come up to more than 5 000 W·m-1·K-1, which is the material with the highest thermal conductivity known at present. However, monolayer graphene is difficult to achieve practical application at macro scale due to its geometric size such as thin thickness and small sheet diameter. Due to the rapid development of the preparation of high-quality graphene powders by chemical methods, the preparation of flexible graphene paper with high thermal conductivity from graphene powders has become one of the hot research directions in recent years. Although the in-plane thermal conductivity of graphene paper has been able to reach more than 1 000 W·m-1·K-1, there is still a large gap between the thermal conductivity of graphene paper and that of monolayer graphene. Meanwhile, the through-plane thermal conductivity of graphene paper is extremely low. In recent years, researchers have studied the graphene paper for increasing the in-plane thermal conductivity and through-plane thermal conductivity via employing large size graphene powder, optimizing the microstructure of graphene paper, innovating the reduction method, introducing other materials in graphene paper and so on. This paper reviews the recent research progress of graphene paper, introduces the preparation methods, analyzes the factors that may affect the thermal conductivity of graphene paper, discusses the methods which can enhance the thermal conductivity of graphene paper, summarizes the research trend of thermal conductivity of graphene paper and prospects the application of graphene paper in thermal management at the same time.
1 Moore A L, Shi L. Materials Today, 2014, 17, 163. 2 Sylvester D, Kaul H.IEEE Design & Test of Computers, 2001, 18, 12. 3 Gurrum S P, Suman S K, Joshi Y K, et al.IEEE Transactions on Device and Materials Reliability, 2004, 4, 709. 4 Yu W, Cai X H, Huang W H, et al.Physics, 1999, 28(6), 356 (in Chinese). 余稳, 蔡新华, 黄文华, 等. 物理, 1999, 28(6), 356. 5 Klemens P G.International Journal of Thermophysics, 2001, 22, 265. 6 Nika D L, Ghosh S, Pokatilov E P, et al.Applied Physics Letters, 2009, 94, 203103. 7 NikaD L, Pokatilov E P, Askerov A S, et al.Physical Review B, 2009, 79, 155413. 8 Balandin A A, Ghosh S, Bao W Z, et al.Nano Letters, 2008, 8, 902. 9 Balandin A A.Nature Materials, 2011, 10, 569. 10 DikinD A, Stankovich S, Zimney E J, et al.Nature, 2007, 448, 457. 11 Ranjbartoreh A R, Wang B, Shen X P, et al.Journal of Applied Physics, 2011, 109, 014306. 12 Renteria J D, Ramirez S, Malekpour H, et al.Advanced Functional Materials, 2015, 25, 4664. 13 Song N, Chen C, Lu C, et al.Journal of Materials Chemistry A, 2014, 2, 16563. 14 LiQ, Tian X, Chen Z, et al.Journal of Materials Science, 2018, 53, 10261. 15 Kumar P, Shahzad F, Yu S, et al.Carbon, 2015, 94, 494. 16 Peng L, Xu Z, Liu Z, et al.Advanced Materials, 2017, 29, 1700589. 17 Xin G, Sun H, Hu T, et al.Advanced Materials, 2014, 26, 4521. 18 Ding J, Rahman O, Zhao H, et al.Nanotechnology, 2017, 28, 39LT01. 19 Yu W, Xie H, Chen L, et al.Thin Solid Films, 2015, 597, 77. 20 Kong Q, Liu Z, Gao J, et al.Advanced Functional Materials, 2014, 24, 4222. 21 Li H, Miao J, Wu X, et al.Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1215. 22 Li J, Chen X, Lei R, et al.Journal of Materials Science, 2019, 54, 7553. 23 Zhang J, Shi G, Jiang C, et al.Small, 2015, 11, 6197. 24 Geim A K, Novoselov K S.Nature Materials, 2007, 6, 183. 25 Ghosh S, Bao W Z, Nika D L, et al.Nature Materials, 2010, 9, 555. 26 Hou Z, Song W, Wang P, et al.ACS Applied Materials & Interfaces, 2014, 6, 15026. 27 Hummers W S, Offeman R.Journal of the American Chemical Society, 1958, 80, 1339. 28 Marcano D C, Kosynkin D V, Berlin J M, et al.ACS Nano, 2010, 4, 4806. 29 Chen J, Yao B, Shi G.Carbon, 2013, 64, 225. 30 Shahriary L, Athawale A A.International Journal of Renewable Energy and Environmental Engineering, 2014, 2, 58. 31 Zaaba N I, Foo K L, Hashim U, et al.Procedia Engineering, 2017, 184, 469. 32 Zhu Y, Murali S, Cai W, et al.Advanced Materials, 2010, 22, 3906. 33 Konios D, Stylianakis M M, Stratakis E, et al.Journal of Colloid and Interface Science, 2014, 430, 108. 34 Gao X, Jang J, Nagase S.Journal of Physical Chemistry C, 2010, 114, 832. 35 Moon I K, Lee J, Ruoff R S, et al.Nature Communications, 2010, 1, 73. 36 Jia H, Kong Q, Yang X, et al.Carbon, 2021, 171, 329. 37 Kumar P, Shahzad F, Yu S, et al.Carbon, 2015, 94, 494. 38 Fernández-Merino J, Guardia L, Paredes J I, et al.Journal of Physical Chemistry C, 2010, 114, 6426. 39 Guo Y, Dun C, Xu J, et al.Small, 2017, 13, 1702645. 40 Tang J J. Preparation of high quality graphene dispersion. Master’s Thesis, Nanjing University of Science & Technology, China, 2013 (in Chinese). 唐晶晶. 高质量石墨烯分散液的制备. 硕士学位论文, 南京理工大学, 2013. 41 Compton O C, An Z, Putz K W, et al.Carbon, 2012, 50, 3399. 42 Du W, Wu H, Chen H, et al.Carbon, 2020, 158, 568. 43 Zhang T, Zhang D.Bulletin of Materials Science, 2011, 34, 25. 44 Liu S, Hu K, Cerruti M, et al.Carbon, 2020, 158, 426. 45 Muhsan A A, Lafdi K.Journal of Applied Physics, 2019, 126, 155109. 46 Shen B, Zhai W, Zheng W.Advanced Functional Materials, 2014, 24, 4542. 47 Xin G, Zhu W, Yao T, et al.Applied Physics Letters, 2017, 110, 091909. 48 Shi G, Zhang J W, Lei F W, et al.Journal of National University of Defense Technology, 2016, 38(3), 112 (in Chinese). 石刚, 张鉴炜, 雷博文, 等. 国防科技大学学报, 2016, 38(3), 112. 49 Lin S, Ju S, Zhang J, et al.RSC Advances, 2019, 9, 1419. 50 Aboutalebi S, Gudarzi M, Zheng Q, et al.Advanced Functional Materials, 2011, 21, 2978. 51 Botas C, Álvarez P, Blanco C, et al.Carbon, 2013, 52, 476. 52 Wang N, Samani M K, Li H, et al.Small, 2018, 14, 1801346. 53 Feng L M. Preparation and thermal conductance research of graphite film by graphene oxide. Master’s Thesis, Harbin Institute of Technology, China, 2015 (in Chinese). 冯林敏. 氧化石墨烯制备石墨膜及其导热性能研究. 硕士学位论文, 哈尔滨工业大学, 2015. 54 Wang L X, He Y C, Mao J J, et al.Surface Technology, 2021, 50(10), 186 (in Chinese). 王兰喜, 何延春, 卯江江, 等. 表面技术, 2021, 50(10), 186. 55 Wei Z, Ni Z, Bi K, et al.Carbon, 2011, 49, 2653. 56 Zhang Y, Han H, Wang N, et al.Advanced Functional Materials, 2015, 25, 4430. 57 Liu Y, Thiringer T, Wang N, et al.In:2020 IEEE 8th Electronics System-Integration Technology Conference. Tønsberg, 2020, pp. 1. 58 Huang S, Bao J, Ye H, et al.In:2016 17th International Conference on Electronic Packaging Technology. Wuhan, 2016, pp. 889. 59 Gao J, Meng C, Xie D, et al.Applied Thermal Engineering, 2019, 150, 1252. 60 Hu G, Chen Y, Wang M, et al.IOP Conference Series: Materials Science and Engineering, International Conference on Energy, Power and Mechanical Engineering (EPME2019), 2019, 793, 012031.