Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 20110183-9    https://doi.org/10.11896/cldb.20110183
  无机非金属及其复合材料 |
石墨烯导热纸研究进展
王兰喜*, 何延春, 王虎, 吴春华, 李林
兰州空间技术物理研究所,真空技术与物理重点实验室,兰州 730000
Recent Research Progress of Graphene Thermal Conductive Papers
WANG Lanxi*, HE Yanchun, WANG Hu, WU Chunhua, LI Lin
Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 8979KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于依靠声子进行热传导的特性,石墨烯具有异乎寻常的高热导率。理论和实验研究均已证明,单层石墨烯的热导率可达5 000 W·m-1·K-1以上,是目前已知热导率最高的一种材料。然而,单层石墨烯由于厚度薄、片径小等几何尺寸上的原因而很难在宏观尺度上获得实际应用。得益于化学方法制备高质量石墨烯粉体的快速发展,将石墨烯粉体制备成柔性的高导热石墨烯纸是近几年的热点研究方向之一。虽然石墨烯纸的面内热导率已经能够达到1 000 W·m-1·K-1以上,但与单层石墨烯的热导率仍存在较大的差距,且纵向热导率低。近几年,科研人员从大尺寸石墨烯粉体的采用、石墨烯纸微观结构的优化、还原处理方法的改进、石墨烯与其他物质混合等方面进行了研究,在提高石墨烯纸的热导率上取得了比较显著的效果。本文综述了有关石墨烯纸的研究进展,介绍了石墨烯纸的制备方法,并分析影响石墨烯纸热导率的因素,讨论增强石墨烯纸热导率的方法,总结了提高石墨烯纸热导率的研究思路和发展趋势,最后展望了石墨烯纸在热管理领域的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王兰喜
何延春
王虎
吴春华
李林
关键词:  石墨烯导热纸  石墨烯纸制备方法  热导率影响因素  热管理应用    
Abstract: Graphene has extremely high thermal conductivity due to its property of relying on phonons for heat conduction. Both theoretical and experimental studies have proved that the thermal conductivity of monolayer graphene can come up to more than 5 000 W·m-1·K-1, which is the material with the highest thermal conductivity known at present. However, monolayer graphene is difficult to achieve practical application at macro scale due to its geometric size such as thin thickness and small sheet diameter. Due to the rapid development of the preparation of high-quality graphene powders by chemical methods, the preparation of flexible graphene paper with high thermal conductivity from graphene powders has become one of the hot research directions in recent years. Although the in-plane thermal conductivity of graphene paper has been able to reach more than 1 000 W·m-1·K-1, there is still a large gap between the thermal conductivity of graphene paper and that of monolayer graphene. Meanwhile, the through-plane thermal conductivity of graphene paper is extremely low. In recent years, researchers have studied the graphene paper for increasing the in-plane thermal conductivity and through-plane thermal conductivity via employing large size graphene powder, optimizing the microstructure of graphene paper, innovating the reduction method, introducing other materials in graphene paper and so on. This paper reviews the recent research progress of graphene paper, introduces the preparation methods, analyzes the factors that may affect the thermal conductivity of graphene paper, discusses the methods which can enhance the thermal conductivity of graphene paper, summarizes the research trend of thermal conductivity of graphene paper and prospects the application of graphene paper in thermal management at the same time.
Key words:  graphene thermal conductive paper    preparation methods of graphene paper    influence factors of thermal conductivity    applications in thermal management
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  O482.2+2  
基金资助: 真空技术与物理重点实验室基金(6142207190405);甘肃省自然科学基金(20JR5RA080)
通讯作者:  *wanglanxi@live.com,王兰喜,博士,兰州空间技术物理研究所高级工程师。2003年河北大学物理学本科毕业,2006年兰州大学凝聚态物理硕士毕业,2009年兰州空间技术物理研究所物理电子学博士毕业,2013年10月至2014年10月在英国布里斯托大学进行博士后研究。目前主要研究方向为先进碳材料,发表论文40余篇。   
引用本文:    
王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
WANG Lanxi, HE Yanchun, WANG Hu, WU Chunhua, LI Lin. Recent Research Progress of Graphene Thermal Conductive Papers. Materials Reports, 2023, 37(3): 20110183-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110183  或          http://www.mater-rep.com/CN/Y2023/V37/I3/20110183
1 Moore A L, Shi L. Materials Today, 2014, 17, 163.
2 Sylvester D, Kaul H.IEEE Design & Test of Computers, 2001, 18, 12.
3 Gurrum S P, Suman S K, Joshi Y K, et al.IEEE Transactions on Device and Materials Reliability, 2004, 4, 709.
4 Yu W, Cai X H, Huang W H, et al.Physics, 1999, 28(6), 356 (in Chinese).
余稳, 蔡新华, 黄文华, 等. 物理, 1999, 28(6), 356.
5 Klemens P G.International Journal of Thermophysics, 2001, 22, 265.
6 Nika D L, Ghosh S, Pokatilov E P, et al.Applied Physics Letters, 2009, 94, 203103.
7 NikaD L, Pokatilov E P, Askerov A S, et al.Physical Review B, 2009, 79, 155413.
8 Balandin A A, Ghosh S, Bao W Z, et al.Nano Letters, 2008, 8, 902.
9 Balandin A A.Nature Materials, 2011, 10, 569.
10 DikinD A, Stankovich S, Zimney E J, et al.Nature, 2007, 448, 457.
11 Ranjbartoreh A R, Wang B, Shen X P, et al.Journal of Applied Physics, 2011, 109, 014306.
12 Renteria J D, Ramirez S, Malekpour H, et al.Advanced Functional Materials, 2015, 25, 4664.
13 Song N, Chen C, Lu C, et al.Journal of Materials Chemistry A, 2014, 2, 16563.
14 LiQ, Tian X, Chen Z, et al.Journal of Materials Science, 2018, 53, 10261.
15 Kumar P, Shahzad F, Yu S, et al.Carbon, 2015, 94, 494.
16 Peng L, Xu Z, Liu Z, et al.Advanced Materials, 2017, 29, 1700589.
17 Xin G, Sun H, Hu T, et al.Advanced Materials, 2014, 26, 4521.
18 Ding J, Rahman O, Zhao H, et al.Nanotechnology, 2017, 28, 39LT01.
19 Yu W, Xie H, Chen L, et al.Thin Solid Films, 2015, 597, 77.
20 Kong Q, Liu Z, Gao J, et al.Advanced Functional Materials, 2014, 24, 4222.
21 Li H, Miao J, Wu X, et al.Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1215.
22 Li J, Chen X, Lei R, et al.Journal of Materials Science, 2019, 54, 7553.
23 Zhang J, Shi G, Jiang C, et al.Small, 2015, 11, 6197.
24 Geim A K, Novoselov K S.Nature Materials, 2007, 6, 183.
25 Ghosh S, Bao W Z, Nika D L, et al.Nature Materials, 2010, 9, 555.
26 Hou Z, Song W, Wang P, et al.ACS Applied Materials & Interfaces, 2014, 6, 15026.
27 Hummers W S, Offeman R.Journal of the American Chemical Society, 1958, 80, 1339.
28 Marcano D C, Kosynkin D V, Berlin J M, et al.ACS Nano, 2010, 4, 4806.
29 Chen J, Yao B, Shi G.Carbon, 2013, 64, 225.
30 Shahriary L, Athawale A A.International Journal of Renewable Energy and Environmental Engineering, 2014, 2, 58.
31 Zaaba N I, Foo K L, Hashim U, et al.Procedia Engineering, 2017, 184, 469.
32 Zhu Y, Murali S, Cai W, et al.Advanced Materials, 2010, 22, 3906.
33 Konios D, Stylianakis M M, Stratakis E, et al.Journal of Colloid and Interface Science, 2014, 430, 108.
34 Gao X, Jang J, Nagase S.Journal of Physical Chemistry C, 2010, 114, 832.
35 Moon I K, Lee J, Ruoff R S, et al.Nature Communications, 2010, 1, 73.
36 Jia H, Kong Q, Yang X, et al.Carbon, 2021, 171, 329.
37 Kumar P, Shahzad F, Yu S, et al.Carbon, 2015, 94, 494.
38 Fernández-Merino J, Guardia L, Paredes J I, et al.Journal of Physical Chemistry C, 2010, 114, 6426.
39 Guo Y, Dun C, Xu J, et al.Small, 2017, 13, 1702645.
40 Tang J J. Preparation of high quality graphene dispersion. Master’s Thesis, Nanjing University of Science & Technology, China, 2013 (in Chinese).
唐晶晶. 高质量石墨烯分散液的制备. 硕士学位论文, 南京理工大学, 2013.
41 Compton O C, An Z, Putz K W, et al.Carbon, 2012, 50, 3399.
42 Du W, Wu H, Chen H, et al.Carbon, 2020, 158, 568.
43 Zhang T, Zhang D.Bulletin of Materials Science, 2011, 34, 25.
44 Liu S, Hu K, Cerruti M, et al.Carbon, 2020, 158, 426.
45 Muhsan A A, Lafdi K.Journal of Applied Physics, 2019, 126, 155109.
46 Shen B, Zhai W, Zheng W.Advanced Functional Materials, 2014, 24, 4542.
47 Xin G, Zhu W, Yao T, et al.Applied Physics Letters, 2017, 110, 091909.
48 Shi G, Zhang J W, Lei F W, et al.Journal of National University of Defense Technology, 2016, 38(3), 112 (in Chinese).
石刚, 张鉴炜, 雷博文, 等. 国防科技大学学报, 2016, 38(3), 112.
49 Lin S, Ju S, Zhang J, et al.RSC Advances, 2019, 9, 1419.
50 Aboutalebi S, Gudarzi M, Zheng Q, et al.Advanced Functional Materials, 2011, 21, 2978.
51 Botas C, Álvarez P, Blanco C, et al.Carbon, 2013, 52, 476.
52 Wang N, Samani M K, Li H, et al.Small, 2018, 14, 1801346.
53 Feng L M. Preparation and thermal conductance research of graphite film by graphene oxide. Master’s Thesis, Harbin Institute of Technology, China, 2015 (in Chinese).
冯林敏. 氧化石墨烯制备石墨膜及其导热性能研究. 硕士学位论文, 哈尔滨工业大学, 2015.
54 Wang L X, He Y C, Mao J J, et al.Surface Technology, 2021, 50(10), 186 (in Chinese).
王兰喜, 何延春, 卯江江, 等. 表面技术, 2021, 50(10), 186.
55 Wei Z, Ni Z, Bi K, et al.Carbon, 2011, 49, 2653.
56 Zhang Y, Han H, Wang N, et al.Advanced Functional Materials, 2015, 25, 4430.
57 Liu Y, Thiringer T, Wang N, et al.In:2020 IEEE 8th Electronics System-Integration Technology Conference. Tønsberg, 2020, pp. 1.
58 Huang S, Bao J, Ye H, et al.In:2016 17th International Conference on Electronic Packaging Technology. Wuhan, 2016, pp. 889.
59 Gao J, Meng C, Xie D, et al.Applied Thermal Engineering, 2019, 150, 1252.
60 Hu G, Chen Y, Wang M, et al.IOP Conference Series: Materials Science and Engineering, International Conference on Energy, Power and Mechanical Engineering (EPME2019), 2019, 793, 012031.
No related articles found!
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed