Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 21010218-9    https://doi.org/10.11896/cldb.21010218
  高分子与聚合物基复合材料 |
聚羟基脂肪酸酯(PHAs)基止血材料研究进展
吴远东1,2, 郑维爽1,2, 李源遽1,2, 都贝宁1,2, 张兴儒1,2, 李家龙1,2, 于盛洋1,2, 肖忆楠1,2, 赖琛1,2, 盛立远1,2, 黄艺1,2,3,*
1 北京大学深圳研究院,广东 深圳 518057
2 深港产学研基地,广东 深圳 518057
3 北京大学环境科学与工程学院,北京 100871
Research Progress on Polyhydroxyalkanoates (PHAs)-based Hemostatic Materials
WU Yuandong1,2, ZHENG Weishuang1,2, LI Yuanju1,2, DU Beining1,2, ZHANG Xingru1,2, LI Jialong1,2, YU Shengyang1,2, XIAO Yinan1,2, LAI Chen1,2, SHENG Liyuan1,2, HUANG Yi1,2,3,*
1 Shenzhen Institute,Peking University, Shenzhen 518057, Guangdong, China
2 PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057, Guangdong, China
3 School of Environmental Science and Engineering, Peking University, Beijing 100871, China
下载:  全 文 ( PDF ) ( 7031KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在意外事故、自然灾害及军事冲突中,人体会受到严重外部创伤,出现大量的不可控出血,极易导致伤员的缺血性休克甚至死亡。因此,伤口的快速止血是提高伤者存活率的关键,快速止血一般需要借助止血材料实现。聚羟基脂肪酸酯(PHAs)是一种天然高分子化合物,具有良好的生物相容性、生物可降解性、可改性等特性,其降解产物还具有促进活体细胞增殖和分化的作用,可加速伤口愈合,是一种极具潜力的止血材料,受到生物医学研发人员的广泛关注。但在应用过程中,PHAs基材料在韧性、抗菌和凝血能力方面仍然存在缺陷。因此,若想开发基于PHAs的止血材料,必须对其韧性、抗菌能力及凝血性能进行改善。本文综述了近年来PHAs基材料在韧性、抗菌能力以及凝血性能等方面的研究进展,可为PHAs基止血材料的研究开发提供参考。PHAs基止血材料具有较高的经济价值,相关研究对严重创伤的救护和新型生物材料的应用推广具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴远东
郑维爽
李源遽
都贝宁
张兴儒
李家龙
于盛洋
肖忆楠
赖琛
盛立远
黄艺
关键词:  聚羟基脂肪酸酯  力学性能  止血材料  凝血  抗菌    
Abstract: During accidents, natural disasters and war, the body of human may suffer serious physical trauma, which will lead uncontrollable massive blood loss. This may further result in ischemic shock and death in the injured. Therefore, fast hemostasis of wound is the key to improve the survival rate of the injured. Fast hemostasis is generally based on using hemostatic materials. Polyhydroxyalkanoates (PHAs), a natural polymer compound, has good biocompatibility, biodegradability and modifying properties. The degradation products of PHAs can also promote the proliferation and differentiation of cells, which can further facilitate healing of wound. Hence PHAs is a good matter of developing hemostatic materials and has attracted extensive attention from biomedical materials researchers. However, PHAs-based materials still have some shortcomings, such as poor toughness, low antibacterial and coagulation performance. Before developing PHAs-based hemostatic materials, the toughness, antibacterial capacity and coagulation performance need to be improved. This review summarizes the research progress of PHAs-based hemostatic materials in recent years, which may provide effective methods and instructions for researching and developing the PHAs-based hemostatic materials. The successful development of PHAs-based hemostatic materials with great socioeconomic value will have significance for emergency of military and sustainable development of mankind.
Key words:  polyhydroxyalkanoates    mechanical property    hemostatic material    coagulation    antibacterial
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  R318.08  
基金资助: 深圳市中央引导地方科技发展专项资金(2021Szvup001);广东省海洋经济发展(海洋六大产业)专项资金项目(粤自然资合[2020]034号);深圳市基础研究学科布局项目(JCYJ20170815153143221; JCYJ202000109144604020);中国博士后科学基金(2021M690247);深港产学研创新基金(HT-JD-CXY-201902; HT-JD-CXY-201907)
通讯作者:  *yhuang@pku.edu.cn,黄艺,1997年7月毕业于德国比勒菲尔德大学,获自然科学博士学位。现为北京大学环境科学与工程学院教授。自1998年始,在北京大学城市与环境学院和环境科学与工程学院从事环境生态和环境生物技术相关的科研及教学工作。在污染环境和极端生境下的微生物生态过程、流域水生态系统过程和环境修复生物技术的研究方面具有独特的建树。先后主持了国家重大水专项、环保部公益项目、国家自然科学基金以及科技部重点研发计划等国家项目,以及ITTO、UNEP等国际重要合作科研项目20多项。在国内外具有重要影响力的杂志发表相关科研论文100余篇,获得专利4项。   
作者简介:  吴远东,2012年本科毕业于南华大学资源环境与安全工程学院,2017年7月在中国科学院西北生态环境资源研究院取得地球化学专业博士学生,2018—2020年在西安交通大学从事博士后研究工作,现为北京大学深圳研究院生物医学工程中心副研究员。主要从事生物可降解医用材料、抗菌包装材料及水环境修复纳米复合材料研发。目前,发表SCI论文30余篇,总被引300余次。
引用本文:    
吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
WU Yuandong, ZHENG Weishuang, LI Yuanju, DU Beining, ZHANG Xingru, LI Jialong, YU Shengyang, XIAO Yinan, LAI Chen, SHENG Liyuan, HUANG Yi. Research Progress on Polyhydroxyalkanoates (PHAs)-based Hemostatic Materials. Materials Reports, 2023, 37(3): 21010218-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010218  或          http://www.mater-rep.com/CN/Y2023/V37/I3/21010218
1 Hartgerink J D. Nature Nanotechnology, 2006, 1(3),166.
2 Sarhan W A, Azzazy H M E, El-Sherbiny I M. ACS Applied Materials & Interfaces, 2016, 8(10), 637.
3 Li Z, Milionis A, Zheng Y, et al. Nature Communications, 2019,10(1),1.
4 Katzenell U. Military Medicine, 2012, 177(9), 1065.
5 Wang L, You X, Dai C, et al. Biomaterials Science, 2020, 8(16), 4396.
6 David S K, Eric D M, Matthew D G. Annals of Vascular Surgery, 2016, 31, 46.
7 Krzysztof G, Mariusz G, Witold P. Journal of Education, 2017, 7(7), 92.
8 Broderick J, Connolly S, Feldmann E, et al. Stroke, 2007, 38(6), 2001.
9 Hickman D A, Pawlowski C L, Sekhon U D, et al. Advanced Materials, 2018,30(4), 1700859.
10 Zheng C, Zeng Q, Pimpi S, et al. Journal of Materials Chemistry B, 2020,8(25),5395.
11 Luo Z, Wu Y, Li Z,et al. Biotechnology Journal, 2019,14(12),1900283.
12 Zhao Y, Zou B, Shi Z, et al. Biomaterials, 2007,28(20),3063.
13 Xiao X, Zhao Y, Chen G. Biomaterials, 2007,28(25),3608.
14 Soejima E, Ohki T, Kurita Y, et al. PloS One,2018,13(3), e0191147.
15 Wang L, Yang Z, Fan F, et al. Biomacromolecules, 2019,20(9),3294.
16 Han J, Wu L, Hou J, et al. Biomacromolecules, 2015,16(2),578.
17 Barham P J, Keller A. Journal of Polymer Science Part B, 1986,24(1),69.
18 Barham P J, Barker P, Organ S J. FEMS Microbiology Reviews, 1992,9(2-4),289.
19 De K, Scheeren A H C, Lemstra P J, et al. Polymer, 1994,35(21),4598.
20 Chen G Q. Microbial polyhydroxyalkanoate, Chemical Industry Press, China, 2011 (in Chinese).
陈国强. 微生物聚羟基脂肪酸酯, 化学工业出版社, 2014.
21 Li Z, Reimer C, Wang T, et al. Polymers, 2020,12(6),1300.
22 Elmowafy E, Abdal-Hay A, Skouras A, et al. Expert Review of Medical Devices, 2019,16(6),467.
23 David Y, Joo J C, Yang J E, et al. Biotechnology Journal, 2017,12(11),1700116.
24 Chen X, Liu B, Zhong C, et al. Advanced Energy Materials, 2017,7(18),1700779.
25 Kim J, Kim Y J, Choi S Y, et al. Biotechnology Journal, 2017,12(1),1600648.
26 Kim Y J, Choi S Y, Kim J.Biotechnology Journal, 2017,12(1),1600649.
27 Kai D, Loh X J. ACS Sustainable Chemistry & Engineering, 2014,2(2),106.
28 Schmidt M, Ienczak J L, Quines L K, et al. Biochemical Engineering Journal, 2016,112(1),13.
29 Chen Y, Chen X Y, Du H T, et al. Metabolic Engineering, 2019,54,69.
30 Shittu O K, Aaron S Y, Oladuntoye M D, et al. Journal of Acute Disease, 2018, 7(1),36.
31 Insomphun C, Xie H, Mifune J, et al. Metabolic Engineering, 2015,27,38.
32 Ren Y, Meng D, Wu L, et al. Microbial Biotechnology, 2017, 10(2), 371.
33 Mohamed R M, Yusoh K. Advanced Materials Research, 2016,249.
34 Hsu S, Hsieh C T, Sun Y M. Journal of Materials Chemistry B, 2015,3,9089.
35 Parola S, Julián-López B, Carlos L D, et al. Advanced Functional Mate-rials, 2016,26(36),6506.
36 Yao H, Wu L, Chen G Q. Biomacromolecules, 2019,20(2),645.
37 Yuk H, Lu B, Zhao X. Chemical Society Reviews, 2019,48(6),1642.
38 Xu P, Yang W, Niu D, et al. Chemical Engineering Journal, 2020,382,122864.
39 Cai Z J, Cheng G X, Geng M M, et al. Journal of Polymer Research, 2004,11(2),99.
40 Jiang T, Hu P. Polymer Journal, 2001, 33(9), 647.
41 Zhao W, Chen G Q. Process Biochemistry, 2007,42(9),1342.
42 Parulekar Y, Mohanty A K. Green Chemistry, 2006,8(2),206.
43 Yeo J C C, Muiruri J K, Tan B H, et al. ACS Sustainable Chemistry & Engineering, 2018,6(11),15517.
44 Prakalathan K, Mohanty S, Nayak S K. Polymer Composites, 2014,35(5),999.
45 Smith M K M, Paleri D M, Abdelwahab M, et al. Green Chemistry, 2020,22(12),3906.
46 Kim J W, Shin S S, Yoon W, et al. Journal of Computer Assisted Tomography, 2011, 35(2), 206.
47 Dinjaski N, Fernández-Gutiérrez M, Selvam S. Biomaterials, 2014,35(1),14.
48 Li Z, Loh X J. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2017,9(3), e1429.
49 Onaizi S A, Leong S S J. Biotechnology Advances, 2011,29(1),67.
50 Xu P, Yang W, Niu D, et al. Chemical Engineering Journal, 2020, 382, 122864.
51 Thallinger B, Prasetyo E N, Nyanhongo G S, et al. Biotechnology Journal, 2013,8(1),97.
52 Lipovsky A, Thallinger B, Perelshtein I, et al. Journal of Materials Chemistry B, 2015,3(35),7014.
53 Burgos N, Armentano I, Fortunati E, et al. Food Bioprocess Technology, 2017,10(4),770.
54 Fernandes J G, Correia D M, Botelho G, et al. Polymer Testing, 2014,34,64.
55 Ke Y, Liu C, Zhang X, et al. Macromolecular Materials and Enginee-ring, 2017,302(11),1700258.
56 Bhattacharjee A, Kumar K, Arora A, et al. Materials Science and Engineering C, 2016,63,266.
57 Wu J, Su C, Jiang L. ACS Sustainable Chemistry & Engineering, 2018,6(7),9145.
58 Yadav R, Balasubramanian K. RSC Advances, 2015,5(32),24990.
59 Slepicˇka P, Malá Z, Rimpelová S, et al. Reactive and Functional Polymers, 2015,95,71.
60 Slepicˇka P, Malá Z,Rimpelová S, et al. Materials Science and Enginee-ring C, 2016,65,364.
61 Bakare R A, Bhan C, Raghavan D. Biomacromolecules, 2014,15(1),423.
62 Mukheem A, Shahabuddin S, Akbar N, et al. Nanomaterials, 2019,9(4),645.
63 Qu X H, Wu Q, Chen G Q, et al. Materials Science and Engineering C, 2006, 17(10), 1107.
64 Vigneswari S, Murugaiyah V, Kaur G, et al. Materials Science and Engineering C, 2016, 66, 147.
65 Sevastianov V I, Perova N V, Shishatskaya E I, et al. Journal of Biomaterials Science, 2003,14(10),1029.
66 Ou W, Qiu H, Chen Z, et al. Biomaterials, 2011,32(12),3178.
67 Heijnen H F, Schiel A E, Fijnheer R, et al. Blood, 1999,94(11),3791.
68 Motlagh D, Yang J, Lui K Y, et al. Biomaterials, 2006,27(24),4315.
69 Sperling C, Fischer M, Maitz M F. Biomaterials, 2009,30(27),4447.
70 Chen Z, Cheng S, Xu K. Biomaterials, 2009,30(12),2219.
71 Chen Z, Cheng S, Li Z, et al. Journal of Biomaterials Science, 2009,20(10),1451.
[1] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[2] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[3] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[4] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[5] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[6] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[7] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[8] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[9] 李世杰, 王智辉, 代琳心, 李振瑞, 王佳军, 马建锋, 刘杏娥. 银/尿素改性竹质活性炭的制备及甲醛净化与抗菌性能[J]. 材料导报, 2022, 36(Z1): 22030103-6.
[10] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[11] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[12] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[13] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[14] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[15] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed