Research Progress on Polyhydroxyalkanoates (PHAs)-based Hemostatic Materials
WU Yuandong1,2, ZHENG Weishuang1,2, LI Yuanju1,2, DU Beining1,2, ZHANG Xingru1,2, LI Jialong1,2, YU Shengyang1,2, XIAO Yinan1,2, LAI Chen1,2, SHENG Liyuan1,2, HUANG Yi1,2,3,*
1 Shenzhen Institute,Peking University, Shenzhen 518057, Guangdong, China 2 PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057, Guangdong, China 3 School of Environmental Science and Engineering, Peking University, Beijing 100871, China
Abstract: During accidents, natural disasters and war, the body of human may suffer serious physical trauma, which will lead uncontrollable massive blood loss. This may further result in ischemic shock and death in the injured. Therefore, fast hemostasis of wound is the key to improve the survival rate of the injured. Fast hemostasis is generally based on using hemostatic materials. Polyhydroxyalkanoates (PHAs), a natural polymer compound, has good biocompatibility, biodegradability and modifying properties. The degradation products of PHAs can also promote the proliferation and differentiation of cells, which can further facilitate healing of wound. Hence PHAs is a good matter of developing hemostatic materials and has attracted extensive attention from biomedical materials researchers. However, PHAs-based materials still have some shortcomings, such as poor toughness, low antibacterial and coagulation performance. Before developing PHAs-based hemostatic materials, the toughness, antibacterial capacity and coagulation performance need to be improved. This review summarizes the research progress of PHAs-based hemostatic materials in recent years, which may provide effective methods and instructions for researching and developing the PHAs-based hemostatic materials. The successful development of PHAs-based hemostatic materials with great socioeconomic value will have significance for emergency of military and sustainable development of mankind.
1 Hartgerink J D. Nature Nanotechnology, 2006, 1(3),166. 2 Sarhan W A, Azzazy H M E, El-Sherbiny I M. ACS Applied Materials & Interfaces, 2016, 8(10), 637. 3 Li Z, Milionis A, Zheng Y, et al. Nature Communications, 2019,10(1),1. 4 Katzenell U. Military Medicine, 2012, 177(9), 1065. 5 Wang L, You X, Dai C, et al. Biomaterials Science, 2020, 8(16), 4396. 6 David S K, Eric D M, Matthew D G. Annals of Vascular Surgery, 2016, 31, 46. 7 Krzysztof G, Mariusz G, Witold P. Journal of Education, 2017, 7(7), 92. 8 Broderick J, Connolly S, Feldmann E, et al. Stroke, 2007, 38(6), 2001. 9 Hickman D A, Pawlowski C L, Sekhon U D, et al. Advanced Materials, 2018,30(4), 1700859. 10 Zheng C, Zeng Q, Pimpi S, et al. Journal of Materials Chemistry B, 2020,8(25),5395. 11 Luo Z, Wu Y, Li Z,et al. Biotechnology Journal, 2019,14(12),1900283. 12 Zhao Y, Zou B, Shi Z, et al. Biomaterials, 2007,28(20),3063. 13 Xiao X, Zhao Y, Chen G. Biomaterials, 2007,28(25),3608. 14 Soejima E, Ohki T, Kurita Y, et al. PloS One,2018,13(3), e0191147. 15 Wang L, Yang Z, Fan F, et al. Biomacromolecules, 2019,20(9),3294. 16 Han J, Wu L, Hou J, et al. Biomacromolecules, 2015,16(2),578. 17 Barham P J, Keller A. Journal of Polymer Science Part B, 1986,24(1),69. 18 Barham P J, Barker P, Organ S J. FEMS Microbiology Reviews, 1992,9(2-4),289. 19 De K, Scheeren A H C, Lemstra P J, et al. Polymer, 1994,35(21),4598. 20 Chen G Q. Microbial polyhydroxyalkanoate, Chemical Industry Press, China, 2011 (in Chinese). 陈国强. 微生物聚羟基脂肪酸酯, 化学工业出版社, 2014. 21 Li Z, Reimer C, Wang T, et al. Polymers, 2020,12(6),1300. 22 Elmowafy E, Abdal-Hay A, Skouras A, et al. Expert Review of Medical Devices, 2019,16(6),467. 23 David Y, Joo J C, Yang J E, et al. Biotechnology Journal, 2017,12(11),1700116. 24 Chen X, Liu B, Zhong C, et al. Advanced Energy Materials, 2017,7(18),1700779. 25 Kim J, Kim Y J, Choi S Y, et al. Biotechnology Journal, 2017,12(1),1600648. 26 Kim Y J, Choi S Y, Kim J.Biotechnology Journal, 2017,12(1),1600649. 27 Kai D, Loh X J. ACS Sustainable Chemistry & Engineering, 2014,2(2),106. 28 Schmidt M, Ienczak J L, Quines L K, et al. Biochemical Engineering Journal, 2016,112(1),13. 29 Chen Y, Chen X Y, Du H T, et al. Metabolic Engineering, 2019,54,69. 30 Shittu O K, Aaron S Y, Oladuntoye M D, et al. Journal of Acute Disease, 2018, 7(1),36. 31 Insomphun C, Xie H, Mifune J, et al. Metabolic Engineering, 2015,27,38. 32 Ren Y, Meng D, Wu L, et al. Microbial Biotechnology, 2017, 10(2), 371. 33 Mohamed R M, Yusoh K. Advanced Materials Research, 2016,249. 34 Hsu S, Hsieh C T, Sun Y M. Journal of Materials Chemistry B, 2015,3,9089. 35 Parola S, Julián-López B, Carlos L D, et al. Advanced Functional Mate-rials, 2016,26(36),6506. 36 Yao H, Wu L, Chen G Q. Biomacromolecules, 2019,20(2),645. 37 Yuk H, Lu B, Zhao X. Chemical Society Reviews, 2019,48(6),1642. 38 Xu P, Yang W, Niu D, et al. Chemical Engineering Journal, 2020,382,122864. 39 Cai Z J, Cheng G X, Geng M M, et al. Journal of Polymer Research, 2004,11(2),99. 40 Jiang T, Hu P. Polymer Journal, 2001, 33(9), 647. 41 Zhao W, Chen G Q. Process Biochemistry, 2007,42(9),1342. 42 Parulekar Y, Mohanty A K. Green Chemistry, 2006,8(2),206. 43 Yeo J C C, Muiruri J K, Tan B H, et al. ACS Sustainable Chemistry & Engineering, 2018,6(11),15517. 44 Prakalathan K, Mohanty S, Nayak S K. Polymer Composites, 2014,35(5),999. 45 Smith M K M, Paleri D M, Abdelwahab M, et al. Green Chemistry, 2020,22(12),3906. 46 Kim J W, Shin S S, Yoon W, et al. Journal of Computer Assisted Tomography, 2011, 35(2), 206. 47 Dinjaski N, Fernández-Gutiérrez M, Selvam S. Biomaterials, 2014,35(1),14. 48 Li Z, Loh X J. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2017,9(3), e1429. 49 Onaizi S A, Leong S S J. Biotechnology Advances, 2011,29(1),67. 50 Xu P, Yang W, Niu D, et al. Chemical Engineering Journal, 2020, 382, 122864. 51 Thallinger B, Prasetyo E N, Nyanhongo G S, et al. Biotechnology Journal, 2013,8(1),97. 52 Lipovsky A, Thallinger B, Perelshtein I, et al. Journal of Materials Chemistry B, 2015,3(35),7014. 53 Burgos N, Armentano I, Fortunati E, et al. Food Bioprocess Technology, 2017,10(4),770. 54 Fernandes J G, Correia D M, Botelho G, et al. Polymer Testing, 2014,34,64. 55 Ke Y, Liu C, Zhang X, et al. Macromolecular Materials and Enginee-ring, 2017,302(11),1700258. 56 Bhattacharjee A, Kumar K, Arora A, et al. Materials Science and Engineering C, 2016,63,266. 57 Wu J, Su C, Jiang L. ACS Sustainable Chemistry & Engineering, 2018,6(7),9145. 58 Yadav R, Balasubramanian K. RSC Advances, 2015,5(32),24990. 59 Slepicˇka P, Malá Z, Rimpelová S, et al. Reactive and Functional Polymers, 2015,95,71. 60 Slepicˇka P, Malá Z,Rimpelová S, et al. Materials Science and Enginee-ring C, 2016,65,364. 61 Bakare R A, Bhan C, Raghavan D. Biomacromolecules, 2014,15(1),423. 62 Mukheem A, Shahabuddin S, Akbar N, et al. Nanomaterials, 2019,9(4),645. 63 Qu X H, Wu Q, Chen G Q, et al. Materials Science and Engineering C, 2006, 17(10), 1107. 64 Vigneswari S, Murugaiyah V, Kaur G, et al. Materials Science and Engineering C, 2016, 66, 147. 65 Sevastianov V I, Perova N V, Shishatskaya E I, et al. Journal of Biomaterials Science, 2003,14(10),1029. 66 Ou W, Qiu H, Chen Z, et al. Biomaterials, 2011,32(12),3178. 67 Heijnen H F, Schiel A E, Fijnheer R, et al. Blood, 1999,94(11),3791. 68 Motlagh D, Yang J, Lui K Y, et al. Biomaterials, 2006,27(24),4315. 69 Sperling C, Fischer M, Maitz M F. Biomaterials, 2009,30(27),4447. 70 Chen Z, Cheng S, Xu K. Biomaterials, 2009,30(12),2219. 71 Chen Z, Cheng S, Li Z, et al. Journal of Biomaterials Science, 2009,20(10),1451.