Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 20100004-6    https://doi.org/10.11896/cldb.20100004
  高分子与聚合物基复合材料 |
多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究
刘忠柱1,2,*, 赵伟3, 潘玮1, 李睢水3, 郑国强3, 李倩2
1 中原工学院材料与化工学院,郑州 450007
2 郑州大学力学与安全工程学院,郑州 450001
3 郑州大学材料科学与工程学院,郑州 450001
Structure and Mechanical Properties of Isotactic Polypropylene Composites Modified by Multi-walled Carbon Nanotubes
LIU Zhongzhu1,2,*, ZHAO Wei3, PAN Wei1, LI Suishui3, ZHENG Guoqiang3, LI Qian2
1 School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
2 School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
3 Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 14150KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过熔融共混法制备出等规聚丙烯(iPP)/多壁碳纳米管(MWCNTs)复合材料并对其进行热行为和流变性能测试,结果表明,iPP/MWCNTs复合材料的熔点、复数粘度、储能模量G′和损耗模量G″均大于纯iPP; iPP和iPP/MWCNTs的复数粘度均随着频率增加而减小,表现出明显的“剪切变稀”现象,即呈现出假塑性流体行为。通过注塑成型技术分别制备出iPP和iPP/MWCNTs制品,X射线测试结果表明,iPP和iPP/MWCNTs复合材料制品的结晶度相当,并且其值不随距离皮层深度的增加而发生较大变化。另外,iPP/MWCNTs复合材料制品的取向度整体偏高并且该值随距离皮层深度的增加而逐渐降低。拉伸测试结果表明,与纯iPP制品相比,iPP/MWCNTs复合材料制品的拉伸强度和杨氏模量有较大幅提高,而其断裂伸长率和韧性呈相反趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘忠柱
赵伟
潘玮
李睢水
郑国强
李倩
关键词:  多壁碳纳米管  等规聚丙烯  注射成型  流变行为  力学性能    
Abstract: Isotactic polypropylene (iPP) and multi-walled carbon nanotubes (MWNTs) composites were manufactured by melt blending and its thermal behavior and rheological properties were investigated. The results show that the melting temperature, complex viscosity, storage modulus (G′) and loss modulus (G″) of iPP/MWCNTs composites are higher than that of pure iPP. Moreover, the complex viscosity of iPP and iPP/MWCNTs composites decreases with the increase of frequency, showing an obvious phenomenon of ‘shear thinning’ and a pseudo-plastic fluid behavior. iPP and iPP/MWCNTs products were, respectively, prepared via injection molding technology. X-ray test results show that the crystallinity of iPP and iPP/MWCNTs composite products is constant, and its values do not change significantly with the increase of depth. Moreover, the overall orientation value of iPP/MWCNTs composite products is relatively higher and decreases gradually with the increase of depth. The tensile test results show that, compared with the pure iPP products, the tensile strength and modulus of iPP/MWCNTs composite products are greatly increased, and the elongation at break and toughness are obviously reduced.
Key words:  multi-walled carbon nanotube    isotactic polypropylene    injection molding    rheological behavior    mechanical property
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TQ320.66  
基金资助: 中原工学院青年骨干教师(2019XQG05);中国纺织工业联合会指导性项目(2018070;2021046);中原工学院基本科研业务费专项资金项目(K2022QN009)
通讯作者:  * 刘忠柱,中原工学院讲师。2011年7月和2017年7月,分别在河南工业大学和郑州大学获得高分子材料与工程专业工学学士学位和材料加工工程专业工学博士学位,2017年任中原工学院讲师。以第一作者在国内外学术期刊上发表论文20余篇。主要研究方向包括塑料成型加工及改性,功能性膜材料制备及性能研究,主持包括中原工学院青年骨干教师项目和中国纺织工业联合会指导性项目等。zzliu@zut.edu.cn   
引用本文:    
刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
LIU Zhongzhu, ZHAO Wei, PAN Wei, LI Suishui, ZHENG Guoqiang, LI Qian. Structure and Mechanical Properties of Isotactic Polypropylene Composites Modified by Multi-walled Carbon Nanotubes. Materials Reports, 2023, 37(1): 20100004-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100004  或          http://www.mater-rep.com/CN/Y2023/V37/I1/20100004
1 Iijima S. Nature, 1991, 354, 56.
2 Seo M K, Lee J R, Park S J. Materials Science & Engineering A, 2005, 404, 79.
3 Zhao P, Wang K, Yang H, et al. Polymer, 2007, 48, 5688.
4 Beate K, Petra P, Evgeniy I, et al. Polymer, 2016, 98, 45.
5 He X F, Liu Y, Liu Y F, et al. Materials Reports A:Review Papers, 2012, 26(3), 149(in Chinese).
何小芳, 刘源, 刘玉飞, 等. 材料导报:综述篇, 2012, 26(3), 149.
6 Patti A, Barretta R, De Sciarra F M, et al. Composite Structures, 2015, 131, 282.
7 Liu Z Z, Liu X H, Zheng G Q, et al. Polymer Testing, 2017, 58, 227.
8 Xu D H, Wang Z. Polymer, 2008, 49, 330.
9 Liu Z Z, Li L L, Zheng G Q, et al. Composites Communications, 2020, 21, 100381.
10 Li M X, Peng X H, Zou H W, et al. Acta Materiae Compositae Sinica, 2012, 29(4), 10(in Chinese).
李明轩, 彭雄厚, 邹华维, 等. 复合材料学报, 2012, 29(4), 10.
11 Liu P, White K L, Sugiyama H, et al. Macromolecules, 2013, 46, 463.
12 Zhang X H. The relationship between structureand rheological properties of polypropylene and its nanocomposite. Master’s Thesis, Lanzhou University, China, 2010(in Chinese).
张小虎. 聚丙烯及其纳米复合材料结构与流变性能的关系. 硕士学位论文, 兰州大学, 2010.
13 Beate K, Mandy M, Petra P, et al. Carbon, 2010, 48, 2746.
14 Park C, Ounaies Z, Watson K A, et al. Chemical Physics Letters, 2002, 364, 303.
15 Wang S W, Yang W, Xu Y J, et al. Polymer Testing, 2008, 27, 638.
16 Shi S Y, Wang L N, Pan Y M, et al. Composites Part B: Engineering, 2019, 167, 362.
17 Yin C L, Liu Z Y, Yang W, et al. Colloid and Polymer Science, 2009, 287, 615.
18 Zhang S, Minus M L, Zhu L, et al. Polymer, 2008, 49, 1356.
19 Haque M A, Mina F, Alam A K M M, et al. Polymer Composites, 2012, 33, 1094.
20 Lee G W, Jagannathan S, Chae H G, et al. Polymer, 2008, 49, 1831.
21 Chen C Y. Research on the rheological behaviors and mechanisms of polypropylene composites filled with multi-walled carbon nanotubes. Master’s Thesis, South China University of Technology, China, 2017(in Chinese).
陈春阳. 多壁碳纳米管填充聚丙烯复合体系的流变行为及其机理研究. 硕士学位论文, 华南理工大学, 2017.
22 Liu Z Z, Qin Q, Li S S, et al. Modern Plastic Processing and Applications, 2017, 29(6), 4(in Chinese).
刘忠柱, 秦琦, 李睢水, 等. 现代塑料加工应用, 2017, 29(6), 4.
23 Liu Z Z, Zheng G Q, Dai K, et al. Journal of Applied Polymer Science, 2016, 133, 43454.
24 Picken S J, Aerts J, Visser R, et al. Macromolecules, 1990, 23, 3849.
25 Zheng G Q, Huang L, Yang W, et al. Polymer, 2007, 48, 5486.
26 Manchado M A L, Valentini L, Biagiotti J, et al. Carbon, 2005, 43, 1499.
27 Assouline E, Lustiger A, Barber A H, et al. Journal of Polymer Science Part B Polymer Physics, 2003, 41, 520.
28 Acierno S, Barretta R, Luciano R, et al. Composite Structures, 2017, 174, 12.
29 Chen Y H, Zhong G J, Lei J, et al. Macromolecules, 2011, 44, 8080.
30 Liu Z Z, Li S S, Li L L, et al. Plastic Science and Technology, 2020, 48(2), 7(in Chinese).
刘忠柱, 李睢水, 李乐乐, 等. 塑料科技, 2020, 48(2), 7.
31 Chen Y H, Zhong G J, Wang Y, et al. Macromolecules, 2009, 42, 4343.
32 Bai H W, Wang Y, Zhang D L, et al. Materials Science and Engineering: A, 2009, 513-514, 22.
[1] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[2] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[3] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[4] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[5] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[6] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[7] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[8] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[9] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[10] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[11] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[12] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[13] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[14] 陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
[15] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed