Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 22110067-9    https://doi.org/10.11896/cldb.22110067
  多尺度稀土晶体材料及其应用 |
稀土氧化物复合材料在电催化中的研究进展
江永, 杜亚平*
南开大学材料科学与工程学院,国家新材料研究院,天津市稀土材料与应用重点实验室,稀土与无机功能材料研究中心, 天津 300350
Research Progress on Rare Earth Oxide Composites in Electrocatalysis
JIANG Yong, DU Yaping*
Center for Rare Earth and Inorganic Functional Materials,Tianjin Key Lab for Rare Earth Materials and Applications, National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
下载:  全 文 ( PDF ) ( 8377KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 稀土是一种重要的战略资源,稀土元素共包含元素周期表中的17种元素,即15种镧系元素(原子序数从57到71)和钪(原子序数 21)与钇(原子序数 39)。在催化领域,稀土元素由于具有特殊的4f电子构型,电子能级结构丰富,配位数多变,在许多反应中表现出出色的催化性能。在各种稀土催化材料中,稀土氧化物复合催化剂由于其制备工艺简单、结构可调变性强等特点在电催化反应中表现出优异的性能。但当前,稀土氧化物基复合催化剂的电催化反应活性与其自身的电子结构之间的关系尚不明确,阻碍了对稀土在电催化反应中所起作用的理解。本文从稀土氧化物电子结构特点出发,简要综述其复合物在电催化反应中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江永
杜亚平
关键词:  稀土氧化物  电子结构  电催化  能源转换    
Abstract: Rare earth is an important strategic resource, and the rare earth elements (REEs) are a class of 17 elements in the periodic table that include 15 lanthanides (atomic numbers from 57 to 71), scandium (atomic number 21), and yttrium (atomic number 39). Rare earth elements show excellent catalytic performance in many reactions in the field of catalysis due to their special 4f electron configuration, abundant electron structure and flexible coordination numbers. Among all kinds of rare earth catalytic materials, the rare earth oxide based composite catalysts show superior performance in electrocatalytic reactions due to its simple preparation process, versatile structural tunability. However, at present, the relationship between the electrocatalytic activity of rare earth oxides based composite catalyst and their electronic structures is still not clear, which hinders the understanding of REEs in electrocatalytic reactions. Therefore, in this review paper, we tried to summarize and highlight the applications of rare earth oxides based composites in electrocatalytic reactions based on the characteristics of their electronic structures.
Key words:  rare earth oxide    electronic structure    electrocatalysis    energy conversion
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TQ426  
  O614.33  
基金资助: 国家自然科学基金(21971117);南开大学中央高校功能科研业务费专项资金(63186005);天津市稀土材料与应用重点实验室(ZB19500202);稀土资源利用国家重点实验室开放基金(RERU2019001);天津市自然科学基金杰出青年项目(20JCJQJC00130);天津市自然科学基金重点项目(20JCZDJC00650);省部共建特色金属材料与组合结构全寿命安全国家重点实验室开放基金(2022GXYSOF07)
通讯作者:  *ypdu@nankai.edu.cn,杜亚平,理学博士,南开大学教授、博士研究生导师。现任天津市稀土材料与应用重点实验室主任、南开大学稀土与无机功能材料研究中心执行主任。主要集中在新型稀土纳米材料的研究,承担和参加国家自然科学基金优青、面上项目、天津市杰青、重点项目、京津冀协同创新重点项目和科技部重点研发项目等研究课题。近五年以通讯作者在Science Advance、Angewandte Chemie International Edition、Advanced Materials、Chemical Society Review等刊物发表论文140余篇,总引用次数12 000余次。曾获国家自然科学基金优秀青年基金。   
作者简介:  江永,2019年6月、2022年6月分别于池州学院和西南大学获得工学学士学位和硕士学位。现为南开大学材料科学与工程学院博士研究生,在杜亚平教授的指导下进行研究。目前主要研究领域为稀土基新型能源材料。
引用本文:    
江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
JIANG Yong, DU Yaping. Research Progress on Rare Earth Oxide Composites in Electrocatalysis. Materials Reports, 2023, 37(3): 22110067-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110067  或          http://www.mater-rep.com/CN/Y2023/V37/I3/22110067
1 Hossain M K, Ahmed M H, Khan M I, et al. ACS Applied Electronic Materials, 2021, 3, 4255.
2 Malta O L. Journal of Non-Crystalline Solids, 2008, 354, 4770.
3 Yuan K, Zhang Y W. Inorganic Chemistry Frontiers, 2020, 7, 4256.
4 Muccillo E N S, Rocha R A, Tadokoro S K, et al. Journal of Electroceramics, 2004, 13, 609.
5 Laberty-Robert C, Long J W, Lucas E M, et al. Chemistry of Materials, 2006, 18, 50.
6 Yadav A A, Lokhande A C, Lokhande C D, et al. Journal of Colloid and Interface Science, 2016, 484, 51.
7 Nataraj N, Chen T W, Chen S M. Chemosphere, 2022, 307, 135711.
8 Ke J, Zhang Y W, Yan C H, et al. Journal of the American Chemical Society, 2013, 135, 15191.
9 Liu W, Zhang J, Yang Y, et al. Nanoscale, 2014, 6, 10693.
10 Zhen J M, Wang F, Zhang H J, et al. Chemistry-A European Journal, 2014, 20, 4469.
11 Guo S Q, Peng L C, Li C J, et al. Chemical Engineering Journal, 2023, 452, 139317.
12 Yang Z M, Duan H G, Huang W Q, et al. Materials Letters, 2014, 133, 109.
13 Zhang L, Chen L, Sun X P, et al. Inorganic Chemistry, 2018, 57, 548.
14 Walter M G, Warren E L, McKone J R, et al. Chemical Reviews, 2010, 110, 6446.
15 Nocera D G. Accounts of Chemical Research, 2012, 45, 767.
16 Yin H, Zhao S, Zhao K, et al. Nature Communications, 2015, 6, 6430.
17 Yu J, Guo Y, She S, et al. Advanced Materials, 2018, 30, 1800047.
18 Sha M A, Elias L, Riyas A H, et al. International Journal of Hydrogen Energy, 2020, 45, 13789.
19 Sun H, Tian C, Du M, et al. Advanced Functional Materials, 2020, 30, 1910596.
20 Sun H, Tian C, Du M, et al. Advanced Sustainable Systems, 2020, 4, 2000122.
21 Wang Z, Du H, Sun X, et al. Nanoscale, 2018, 10, 2213.
22 Luo Q, Zhao Y, Ma F, et al. Chemical Engineering Journal, 2022, 437, 135376.
23 Ding X D, Yu J, Xie Z L, et al. Chemical Engineering Journal, 2023, 451, 138550.
24 Li S, Bu X, Feng P, et al. Energy Environmental Science, 2021, 14, 1897.
25 Feng C, Faheem M B, Li Y, et al. ACS Catalysis, 2020, 10, 4019.
26 Tahir M, Zou J J, Wang Z L, et al. Nano Energy, 2017, 37, 136.
27 Xu H, Liu W, Tang Y, et al. Angewandte Chemie International Edition, 2018, 57, 8654.
28 Liao W Y, Li W Z, Zhang Y. Materials Today Chemistry, 2022, 24, 100791.
29 Feng J X, Tong Y X, Li G R, et al. Advanced Materials, 2016, 28, 4698.
30 Xia J, Du Y, Yan C H, et al. Advanced Functional Materials, 2020, 30, 1908367.
31 Li M, Tang Y, Fu G, et al. Chemical Engineering Journal, 2020, 395, 125160.
32 Kim J H, Henkelman G, Mullins C B, et al. ACS Catalysis, 2018, 8, 4257.
33 Liu Y, Bao J, Dai Z, et al. Advanced Materials, 2019, 31, 1900062.
34 Yang L, Dai L, Hu Z, et al. Advanced Materials, 2019, 31, 1804799.
35 Wang X X, Shao Y, Wu G, et al. Advanced Materials, 2019, 31, 1805126.
36 Yuan H, Zhang Q. Journal of Energy Chemistry, 2020, 48, 107.
37 Ghosh D, Raj R, Pradhan D, et al. ACS Applied Energy Materials, 2022, 5, 5666.
38 Li X, Ren N, Zou J, et al. Journal of Materials Chemistry A, 2019, 7, 25853.
39 Huang Y L, Zhou W, Zhao L, et al. Journal of Colloid and Interface Science, 2022, 625, 839.
40 Meng G, Chen C, Shi J, et al. Chemical Engineering Journal, 2021, 417, 127913.
41 Hao J, Fu X Z, Luo J L, et al. Applied Catalysis B: Environmental, 2021, 281, 119510.
42 Yin K, Li H, Gu S, et al. Journal of the American Chemical Society, 2021, 143, 10822.
43 Dao D V, Lee I H, Yu Y T, et al. Journal of Materials Chemistry A, 2019, 7, 26996.
44 Zhou Q, Lin L, Lin Y, et al. International Journal of Hydrogen Energy, 2019, 44, 10646.
45 Tan Q, Liu Y, Wu G, et al. ACS Catalysis, 2019, 9, 6362.
46 Du Y L, Wu C H, Wu X, et al. Catalysis Letters, DOI: org/10.1007/s10562-022-04174-1.
47 Li W L, Fu X Z, Luo J L, et al. Electrochimica Acta, 2020, 337, 135684.
48 Salarizadeh P, Mohammadi M, Hooshyari K, et al. Journal of Physics and Chemistry of Solids, 2020, 142, 109442.
49 Yan X, Zhang J, Han B, et al. Chemical Science, 2021, 12, 6638.
50 Cai H D, Nie B, Wei X W, et al. ACS Applied Nano Materials, 2022, 5, 7259.
51 Fang B, Song S Y, Zhang H J, et al. Dalton Transactions, 2022, 51, 15089.
52 Lv C, Zhou Y, Yu G, et al. Angewandte Chemie International Edition, 2018, 57, 6073.
53 Zhang J, Wang C, Ran R, et al. ACS Applied Materials Interfaces, 2016, 8, 8670.
54 Dai Z, Han X, Zhang X, et al. Dalton Transactions, 2021, 50, 12301.
[1] 孙加营, 方杨飞, 张一波, 刘秋文, 刘凯杰, 杨向光. CuO修饰CeO2纳米复合磨料的制备及抛光性能[J]. 材料导报, 2023, 37(3): 22120092-5.
[2] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[3] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[4] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[5] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[6] 徐良玉, 黄福祥, 龙敏, 邓鸿元, 陈剑. 过渡金属元素(X=Cr, Mn, Co, Ni, Zn, Zr, Nb, Ta)掺杂立方BaTiO3的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 21090275-5.
[7] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[8] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[9] 刘圆圆, 余强, 陈阵, 朱薇, 胡琪, 郑昭毅, 尤红军, 吕泽, 陈帮耀. 电流密度对钴锰共掺杂二氧化铅阳极材料电化学性能的影响[J]. 材料导报, 2022, 36(18): 20100153-6.
[10] 向阳, 熊昆, 张海东, 陈佳, 余林键. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-8.
[11] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[12] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[13] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[14] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[15] 雷静, 陈子茜, 李怡招, 曹亚丽. 用于电催化氧还原制备双氧水的催化剂的研究进展[J]. 材料导报, 2021, 35(9): 9140-9149.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed