Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 20100153-6    https://doi.org/10.11896/cldb.20100153
  无机非金属及其复合材料 |
电流密度对钴锰共掺杂二氧化铅阳极材料电化学性能的影响
刘圆圆, 余强*, 陈阵, 朱薇, 胡琪, 郑昭毅, 尤红军, 吕泽, 陈帮耀
昆明理工大学理学院,昆明 650500
Effect of Current Density on the Electrochemical Performance of Co Mn Co-doped Lead Dioxide Anode Materials
LIU Yuanyuan, YU Qiang*, CHEN Zhen, ZHU Wei, HU Qi, ZHENG Zhaoyi, YOU Hongjun, LYU Ze, CHEN Bangyao
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 3976KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了获得电催化活性和耐蚀性优异的电积铜阳极材料,采用Co、Mn共掺杂制备复合二氧化铅阳极材料,重点考察电流密度对复合阳极材料性能的影响。通过扫描电子显微镜(SEM)和X射线能谱仪(EDS)表征了镀层的微观形貌、元素组成;采用线性扫描伏安法(LSV)、交流阻抗谱(EIS)和Tafel曲线等电化学方法表征了阳极材料在电积铜液中的电催化活性和耐蚀性能。研究表明:低电流密度下制备的阳极材料晶粒尺寸小,呈颗粒状,致密均匀,具有良好的电催化活性和耐蚀性;综合考察后,最终确定5 mA·cm-2为制备阳极材料的最优电流密度。适宜的沉积电流密度有助于有效控制PbO2的沉积速率、产生细小且均匀的晶粒、增大阳极材料比表面积,同时能够保证Co、Mn在镀层中的掺杂量,有效提升阳极材料的电催化活性。均匀致密镀层的形成,减少了阳极材料的缺陷,使之在介质中不易发生腐蚀从而表现出良好的耐蚀性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘圆圆
余强
陈阵
朱薇
胡琪
郑昭毅
尤红军
吕泽
陈帮耀
关键词:  二氧化铅阳极材料  电流密度  钴锰掺杂  电催化活性  耐蚀性    
Abstract: In order to obtain electrowinning copper anode materials with excellent electrocatalytical activity and corrosion resistance, the composite lead dioxide anode materials were prepared by doping Co and Mn, and the effect of current density on the performance of composite anode materials was investigated. The micro-morphology and elemental composition of the coating were characterized by scanning electron microscope (SEM) and X-ray energy dispersive spectrum (EDS); electrochemical methods such as linear scanning voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and Tafel curves were employed to characterize the electrocatalytical activity and corrosion resistance of anode materials in electrowinning copper solution. Result shows that the anode material prepared at a low current density has smaller grain size and is granular, dense and uniform, presenting good electrocatalytical activity and corrosion resistance; according to comprehensive investigation, 5 mA·cm-2 is the best anode material preparation current density. Proper deposition current density can conduce to effectively controlling the deposition rate of PbO2, producing fine and uniform crystal grains, and increasing the specific surface area of the anode materials, and can ensure the doping amount of Co and Mn in the coating, essentially improving the electrocatalytical activity of the electrode materials. The formation of uniform and dense coating reduces the defects of electrode material, making the eletrode difficult to be corroded in the medium and exhibit good corrosion resistance.
Key words:  PbO2 anode material    current density    Co Mn co-doped    electrocatalytical activity    corrosion resistance
收稿日期:  2022-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TB331  
基金资助: 国家自然科学基金(51464021)
通讯作者:  *yuqiang0015@163.com   
作者简介:  刘圆圆,2021年6月毕业于昆明理工大学,获得应用化学物理硕士学位。以第一作者在国外学术期刊上发表论文1篇,主要从事二氧化铅电极材料的制备及电催化性能的研究。余强,博士,昆明理工大学副教授、硕士研究生导师。2006年硕士毕业于昆明理工大学有色金属冶金专业留校至今,其中2006.08—2007.02在华东理工大学进修学习,2009—2014年攻读博士并获工学博士学位。在国内外学术期刊上发表论文48篇,获授权发明专利10项。主持及参与完成国家自然科学基金项目4项。其团队主要研究方向包括:有色金属电积用惰性复合材料制备及性能研究、金属表面改性及电催化降解有机污染物研究、复合功能材料腐蚀与防护研究、废旧铅酸电池中铅资源绿色回收及循环利用,在金属基纳米复合材料制备研究领域有鲜明的研究特色。
引用本文:    
刘圆圆, 余强, 陈阵, 朱薇, 胡琪, 郑昭毅, 尤红军, 吕泽, 陈帮耀. 电流密度对钴锰共掺杂二氧化铅阳极材料电化学性能的影响[J]. 材料导报, 2022, 36(18): 20100153-6.
LIU Yuanyuan, YU Qiang, CHEN Zhen, ZHU Wei, HU Qi, ZHENG Zhaoyi, YOU Hongjun, LYU Ze, CHEN Bangyao. Effect of Current Density on the Electrochemical Performance of Co Mn Co-doped Lead Dioxide Anode Materials. Materials Reports, 2022, 36(18): 20100153-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100153  或          http://www.mater-rep.com/CN/Y2022/V36/I18/20100153
1 Moats Michael, Free Michael. Journal of Metals, 2007, 59(10), 34.
2 Zhang Z, Chen B M, Guo Z C, et al. Materials Reports A:Review Papers, 2016, 30(10), 112(in Chinese).
张璋,陈步明,郭忠诚,等.材料导报:综述篇, 2016, 30(10), 112.
3 Chen S, Chen B M, Wang S M, et al. Journal of Alloys and Compounds, 2019, 815, 152551.
4 Liu J H, Xu J, Han Z H. ECS Journal of Solid State Science and Technology, 2020, 9(4), 041012.
5 Zhu W, Chen Z, Yu Q, et al. Materials Reprots B: Research Papers, 2016, 30(7), 571(in Chinese).
朱薇,陈阵,余强,等. 材料导报:研究篇, 2016, 30(7), 57.
6 Yu B H, Xu R D, He S W, et al. Materials Chemistry and Physics, 2020, 247, 122536.
7 Suo L, Xu R D, He S W, et al. Acta Materiae Compositae Sinica, 2021, 38(2), 557(in Chinese).
孙利,徐瑞东,何世伟,等. 复合材料学报, 2021, 38(2), 557.
8 Zhang W, Liu M. Science Technology and Engineering, 2019, 19(13), 348(in Chinese).
张玮,刘淼. 科学技术与工程, 2019, 19(13), 348.
9 Isakhani-Zakaria M,Allahkaram S R, Ramezani-Varzaneh H A. Corrosion science, 2019,157(8), 472.
10 Wang X B, Xu R D, Feng S Y, et al. RSC Advances, 2020, 10(3), 1351.
11 Wang J Y, Zhang Y, Yang D D, et al. Guangzhou Chemical Industry, 2020, 48 (15), 7(in Chinese).
王佳奕,张媛,杨丹丹,等. 广州化工, 2020, 48(15), 7.
12 Sun P Z.Guangzhou Chemical Industry, 2018, 46(20), 24(in Chinese).
孙鹏哲. 广州化工, 2018, 46(20), 24.
13 Duan X Y, Zhao C M, Liu W, et al. Electrochimica Acta, 2017, 240, 424.
14 Han Y H, Zhang S T, Zhang X F, et al. International Journal of Electrochemical Science, 2020, 15, 3382.
15 Wang J, Xu R D, Yu B H, et al. Materials Reprots B: Research Papers, 2017, 31(4), 35(in Chinese).
王炯,徐瑞东,于伯浩,等. 材料导报:研究篇, 2017, 31(4), 35.
16 Liu S, Gui L, Peng R C, et al. Processes, 2020, 8(4), 1.
17 Zhang Y C, Guo Z C. Journal of Alloys and Compounds, 2017, 724, 103.
18 Du C L, Yan W, Yu Q, et al. Chemical Research and Application, 2017, 29(12), 1817(in Chinese).
杜重麟,闫文,余强,等. 化学研究与应用, 2017, 29(12), 1817.
19 Abbey C E,Moats M S. The Minerals, Metals & Materials Series, 2018, 125,1521.
20 Yang J, Chen B M, Hang H, et al. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(11), 1205.
21 Barmi M J, Nikoloski A N. Hydrometallurgy, 2012, 129(1), 59.
22 Nikoloski A N, Barmi M J. Hydrometallurgy, 2013, 137, 45.
23 Maysam Mohammadi, Akram Alfantazi. Hydrometallurgy, 2015, 153, 134.
24 Li H X, Cui W R, Zhu W, et al. Chemical Research and Application, 2018, 30(2), 226(in Chinese).
李会喜,崔文蓉,朱薇,等. 化学研究与应用, 2018, 30(2), 226.
25 Wang S C, Chen B M, Huang H, et al. Materlals Scienec And Technology, 2018, 26(6), 89(in Chinese).
汪世川,陈步明,黄惠,等. 材料科学与工艺, 2018, 26(6), 89.
26 Velichenko A B,Amadelli R,Baranova E A, et al. Journal of Electroanalytical Chemistry, 2002, 527(1), 56.
27 Velichenko A B,Amadelli R,Baranova E A, et al. Russian Journal of Electrochemistry, 2003, 39(6), 615.
[1] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[2] 陈小丽. 有机酸对新型铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 22010030-5.
[3] 张嘉颖, 袁玖玮, 张玉凤, 娄紫微, 周文礼, 张晓娟, 彭麟, 徐燕, 徐建明, 杨瑰婷, 和泉充. 顶部热籽晶熔融织构生长法制备的单畴GdBCO块材的超导性能[J]. 材料导报, 2022, 36(15): 21010223-6.
[4] 种振曾, 孙耀宁, 程旺军, 韩晨阳, 苏才津, 娜菲沙·迪力夏提, 樊子龙. 纳米WC对AlCoCrFeNi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2022, 36(14): 22030230-6.
[5] 王权, 吴长军, 徐雪薇, 彭浩平, 刘亚, 苏旭平. 退火处理对CoxCrFeMnNi2-x高熵合金显微组织和耐蚀性的影响[J]. 材料导报, 2022, 36(11): 21110150-7.
[6] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[7] 杜宇航, 丁德渝, 郭宁, 郭胜锋. 高熵合金功能特性研究进展[J]. 材料导报, 2021, 35(17): 17051-17063.
[8] 乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
[9] 曹苗, 谢发勤, 吴向清, 王少青, 鲁闯, 姚小飞. 无铬锌铝涂层的研究进展[J]. 材料导报, 2021, 35(13): 13128-13138.
[10] 曾尚武, 郭夏溦, 张磊, 屈帅, 常建伟, 王舒然, 徐德录, 李雅泊. 铁塔用VCI双金属涂层的制备及性能研究[J]. 材料导报, 2020, 34(Z2): 423-428.
[11] 赵秋萍, 钱庆一, 张斌, 牟志星, 张兴凯. 质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J]. 材料导报, 2020, 34(Z1): 395-399.
[12] 赵静, 王天鹏, 张淮浩. 磁场作用下十二烷基苯磺酸钠对阳极铝箔的缓蚀性能及比电容的影响[J]. 材料导报, 2020, 34(6): 6156-6160.
[13] 余登德, 张仁耀, 沈月, 闻明, 刘洪喜1,. 混合表面纳米化制备钛表面Ru/Ti薄膜的结构及耐蚀性能[J]. 材料导报, 2020, 34(24): 24086-24091.
[14] 李慧莹, 赵君文, 戴光泽, 韩靖, 李旭嘉. 钼酸钠含量对无铬锌铝涂层性能的影响[J]. 材料导报, 2020, 34(2): 2105-2109.
[15] 任超, 罗军明, 陈宇海, 黄俊, 徐吉林. 喷丸对TC4合金微弧氧化涂层磨损和腐蚀行为的影响[J]. 材料导报, 2020, 34(18): 18081-18085.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed