Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24086-24091    https://doi.org/10.11896/cldb.19120029
  金属与金属基复合材料 |
混合表面纳米化制备钛表面Ru/Ti薄膜的结构及耐蚀性能
余登德1, 张仁耀2, 沈月2, 闻明2, 刘洪喜1
1 昆明理工大学材料科学与工程学院,昆明650093
2 昆明贵金属研究所稀贵金属综合利用国家重点实验室,昆明650106
Structure and Corrosion-resistance Properties of Ru/Ti Thin Films on Pure Titanium Surface via Hybrid Surface Nanocrystallization
YU Dengde1, ZHANG Renyao2, SHEN Yue2, WEN Ming2, LIU Hongxi1
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China
下载:  全 文 ( PDF ) ( 5566KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛及钛合金具有比强度高、加工性好、抗冲击震动、耐海水腐蚀及海洋大气腐蚀等优点,使其成为一种优良的船用金属结构材料。但在具有侵蚀性的高浓度氯离子和氟离子的工况下,钛及钛合金易加速腐蚀。 此外,高腐蚀电位的钛及钛合金与其他低腐蚀电位金属 (如铜、铁) 接触时会发生电偶腐蚀,易使其他金属腐蚀失效。 目前,可采用多种表面处理方法来提高钛及钛合金的表面耐腐蚀性能以拓展其适用范围。但目前关于钛及钛合金的表面改性研究主要集中在单一表面处理方法对腐蚀性能的影响,鲜见关于复合表面处理后钛及钛合金的耐腐蚀性能研究。采用表面机械研磨处理 (SMAT)、磁控溅射以及热氧化处理在工业纯钛(TA2)表面制备了Ru/Ti薄膜,并研究了其在模拟海水中的腐蚀性能。借助X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)、电化学工作站等仪器对薄膜的物相组成、微观形貌及耐腐蚀性能进行了研究。结果表明,工业纯钛表面获得的Ru/Ti薄膜均匀致密,无明显缺陷,Ru/Ti 薄膜中的Ti为α-Ti、fcc-Ti双相结构;与未处理样品相比,具有Ti-Ru薄膜的工业纯钛在模拟海水中的耐蚀性能显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余登德
张仁耀
沈月
闻明
刘洪喜1
关键词:  表面机械研磨处理  磁控溅射  热氧化  Ru/Ti薄膜  工业纯钛  耐蚀性    
Abstract: Titanium and titanium alloys have the advantages of high specific strength, good machinability, resistance to shock and vibration, seawater and marine atmospheric corrosion-resistance, etc., making them as excellent marine metal structural materials. However, under aggressive high-concentration chloride and fluoride ions working condition, titanium and titanium alloys are liable to accelerate corrosion. In addition, when titanium and titanium alloys with high corrosion potential are in contact with other metals with low corrosion potential such as copper and iron galvanic corrosion will occur, which will easily cause corrosion of other metals. At present, various surface treatment methods can be used to improve the surface corrosion resistance of titanium and titanium alloys in order to expand their scope of application. However, the previous studies on the surface modification of titanium and titanium alloys mainly focused on the influence of a single surface treatment method on the corrosion performance. There are a few researches on the corrosion resistance of titanium and titanium alloys under a hybrid surface treatment method. The Ru/Ti films on the surface of industrial pure titanium (TA2) was prepared by surface mechanical polishing (SMAT), magnetron sputtering and thermal oxidation treatment, and to study their corrosion properties in simulated seawater. The X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), and electrochemical workstation were used to study the phase composition, surface morphologies, and corrosion resistance of the films. The results showed that the Ru / Ti film obtained on the surface of industrial pure titanium was uniform and dense without obvious defects. The Ti in the Ru / Ti film exhibited an α-Ti and fcc-Ti dual-phase structure. The corrosion resistance of thin film of indust-rial pure titanium in simulated seawater was significantly improved.
Key words:  surface mechanical attrition treatment    magnetron sputtering    thermal oxidation    Ru/Ti film    commercial pure titanium    corrosion resistance
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TG178  
基金资助: 国家自然科学基金(51564025);云南省自然科学基金(2017FA029)
通讯作者:  wen@ipm.com.cn;piiiliuhx@sina.com   
作者简介:  余登德,2017年7月毕业于河南理工大学,获得工学学士学位。现为昆明理工大学材料科学与工程学院全日制硕士研究生,由昆明理工大学与昆明贵金属研究所联合培养,在刘洪喜教授和闻明研究员的指导下进行研究。目前主要研究方向为稀贵金属表面改性。
闻明,2007年于上海交通大学材料科学与工程学院材料学专业获得博士学位。2007年至今在昆明贵金属研究所工作,主要从事稀贵金属溅射靶材及相关薄膜的研究工作。近年来发表SCI论文20余篇,包括Scripta Materialia、Surface & Coatings Technology、Applied Surface Science等。
刘洪喜,男,博士,教授,博士研究生导师,分别于2003年、2007年在哈尔滨工业大学获得硕士、博士学位,主要从事离子束和激光束表面改性、功能涂层优化设计与制备、激光增材制造方面的研究。
引用本文:    
余登德, 张仁耀, 沈月, 闻明, 刘洪喜1,. 混合表面纳米化制备钛表面Ru/Ti薄膜的结构及耐蚀性能[J]. 材料导报, 2020, 34(24): 24086-24091.
YU Dengde, ZHANG Renyao, SHEN Yue, WEN Ming, LIU Hongxi. Structure and Corrosion-resistance Properties of Ru/Ti Thin Films on Pure Titanium Surface via Hybrid Surface Nanocrystallization. Materials Reports, 2020, 34(24): 24086-24091.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120029  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24086
1 Sun J K, Meng X J, Chen C H, et al. Acta Metallurgica Sinica, 2002, 38(z1),33(in Chinese).
孙建科, 孟祥军, 陈春和, 等. 金属学报, 2002, 38(z1), 33.
2 Zhao Y Q. Rare Metals Letters, 2016(7), 398(in Chinese).
赵永庆.中国材料进展, 2016(7), 398.
3 Chen J, Zhao Y Q, Chang H. Materials Reports, 2005(6), 75(in Chinese).
陈军, 赵永庆, 常辉. 材料导报, 2005(6), 75
4 Li C G, Wang B, Pan B, et al. Hot Working Technology, 2015(16), 38(in Chinese).
李崇桂, 王斌, 潘斌, 等. 热加工工艺, 2015(16), 38.
5 Lu K. Acta Metallurgica Sinica, 2015, 51(1), 1(in Chinese).
卢柯.金属学报, 2015, 51(1), 1.
6 Zhang C H, Wang J, Song W, et al. Materials Reports A:Review Papers, 2018, 32(5), 1564.
张聪惠, 王婧,宋薇, 等. 材料导报:综述篇, 2018, 32(5), 1564.
7 Zhang S L, Chen H N, Lin Q H, et al. Transactions of the China Welding Institution, 2005, 26(3), 73.
张淑兰,陈怀宁,林泉洪, 等. 焊接学报, 2005, 26(3), 73.
8 Wang J X. Study on surface nanocrystallization and stress corrosion resis-tance of welded joints. Master′s Thesis, Academy of Mechanical Sciences, China, 2004 (in Chinese).
王吉孝. 焊接接头表面纳米化及抗应力腐蚀性能的研究. 硕士学位论文, 机械科学院, 2004.
9 Li L, Yang M, Zhang J. Surface Technology, 2018(3), 172(in Chinese).
李丽,杨妙,张俊.表面技术, 2018(3), 172.
10 Gorynin I V.Materials Science and Engineering, 1999, 263(2), 112.
11 Bai Q Y. China Surface Engineering, 2013, 26(1), 1(in Chinese).
白清友.中国表面工程, 2013, 26(1), 1.
12 Wen M, Liu G, Gu J f, et al. Applied Surface Science 2009, 255(12), 6097.
13 Jamieson J C. Science, 1963, 140(3562), 72.
14 Errandonea D,Somayazulu M, Häusermann D, et al. Physica B Condensed Matter, 2005, 355(1), 116.
15 Vohra Y K, Spencer P T. Physical Review Letters, 2001, 86(14), 3068.
16 Liu Y R, Zhang J L, Liu Z J, et al. International Journal of Minerals Metallurgy and Materials, 2016, 23(7), 760.
17 Yang M C. Acta Physica Sinica, 1995(12), 1958(in Chinese).
杨明川. 物理学报, 1995(12), 1958.
18 Chakraborty J, Kumar K, Ranjan R, et al. Acta Materialia, 2011, 59(7), 2615.
19 Wu X M, Wu Q C, Sui Y F. Acta Physica Sinica, 1992(7), 1132(in Chinese).
吴雪梅, 邬钦祟, 隋毅峰. 物理学报, 1992(7), 1132.
20 Sugawara Y, Shibata N, Hara S, et al. Journal of Materials Research, 2000, 15(10), 2121.
21 Manna I, Chattopadhyay P P, Nandi P, et al. Journal of Applied Physics, 2003, 93(3), 1520.
22 Chatterjee P, Gupta S P S. Philosophical Magazine A, 2001, 81(1), 49.
23 Wen M, Wen C, Hodgson P, et al. Corrosion Science, 2012, 59, 352.
[1] 曾尚武, 郭夏溦, 张磊, 屈帅, 常建伟, 王舒然, 徐德录, 李雅泊. 铁塔用VCI双金属涂层的制备及性能研究[J]. 材料导报, 2020, 34(Z2): 423-428.
[2] 赵秋萍, 钱庆一, 张斌, 牟志星, 张兴凯. 质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J]. 材料导报, 2020, 34(Z1): 395-399.
[3] 赵静, 王天鹏, 张淮浩. 磁场作用下十二烷基苯磺酸钠对阳极铝箔的缓蚀性能及比电容的影响[J]. 材料导报, 2020, 34(6): 6156-6160.
[4] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[5] 李慧莹, 赵君文, 戴光泽, 韩靖, 李旭嘉. 钼酸钠含量对无铬锌铝涂层性能的影响[J]. 材料导报, 2020, 34(2): 2105-2109.
[6] 刘晓燕, 张琪, 高飞龙, 杨西荣, 罗雷, 柳奎君. 复合变形制备超细晶工业纯钛的研究进展[J]. 材料导报, 2020, 34(19): 19111-19116.
[7] 任超, 罗军明, 陈宇海, 黄俊, 徐吉林. 喷丸对TC4合金微弧氧化涂层磨损和腐蚀行为的影响[J]. 材料导报, 2020, 34(18): 18081-18085.
[8] 卢勇, 冯辉霞. 转化膜致密化及耐蚀性能提升工艺优化进展[J]. 材料导报, 2020, 34(13): 13160-13166.
[9] 周婉秋, 赵玉明, 刘晓安, 杨佳宇, 姜文印, 辛士刚, 康艳红. 1-乙基-3-甲基咪唑硫酸乙酯盐离子液体中采用电化学法合成聚苯胺薄膜及其耐蚀性[J]. 材料导报, 2020, 34(12): 12152-12157.
[10] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[11] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[12] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[13] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[14] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[15] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed