Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21070076-6    https://doi.org/10.11896/cldb.21070076
  无机非金属及其复合材料 |
AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究
才文文1, 贺勇2, 张敏1,*, 史俊杰2
1 内蒙古师范大学物理与电子信息学院,呼和浩特 010022
2 北京大学物理学院,北京 100871
First-principles Investigation on the Structure and Photoelectric Properties of AZrX3 (A=Ba, Ca;X=S, Se, Te) Perovskites
CAI Wenwen1, HE Yong2, ZHANG Min1,*, SHI Junjie2
1 School of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China
2 School of Physics,Peking University, Beijing 100871, China
下载:  全 文 ( PDF ) ( 4172KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于密度泛函理论的第一性原理计算方法,考虑自旋轨道耦合(SOC)效应,采用Heyd-Scuseria-Ernzerhof (HSE06)杂化泛函对带隙进行修正,系统研究了AZrX3(A=Ba, Ca;X=S, Se, Te)无铅钙钛矿的晶体结构、电子结构和光学性质。结果表明,AZrX3钙钛矿为直接带隙半导体材料,且材料的容忍因子介于0.85~0.95之间、形成能位于-1.09~-1.83 eV/atom之间、分解能介于-0.09~0.06 eV/atom之间,表明AZrX3钙钛矿具有稳定的结构。其中,BaZrS3具有空穴有效质量小(0.21 m0)、载流子迁移率高、可见光吸收范围宽、光吸收系数高(~4×105 cm-1)等特点,且光谱极限最大效率(SLME)可达32.36%,高于CH3NH3PbI3(~30%),是很有前途的太阳电池材料。AZrSe3和AZrTe3的光电性质计算显示它们也是潜在的光电材料。AZrX3钙钛矿的研究可为寻找高效无铅的光电材料提供一个新的途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
才文文
贺勇
张敏
史俊杰
关键词:  AZrX3钙钛矿  电子结构  光学性质  第一性原理计算    
Abstract: Considering spin-orbit coupling (SOC) effect, using Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional to correct the band gap, the structure, electronic and optical properties of AZrX3 (A=Ba, Ca;X=S, Se, Te) lead-free perovskites were systematically studied by the first-principles calculation method of density functional theory. The results show that AZrX3 perovskites are direct bandgap semiconductor materials. The tolerance factors of AZrX3 are between 0.85 and 0.95, the formation energies are between -1.09 eV/atom to -1.83 eV/atom, and the decomposition energies are between -0.09 eV and 0.06 eV, which indicates that AZrX3 have stable structures. Among them, BaZrS3 is a promi-sing solar cell material, because of its small hole effective mass (0.21 m0), high carrier mobility, wide visible light absorption range, and high light absorption coefficient (~4×105 cm-1), as well as the spectroscopic limited maximum efficiency (SLME) 32.36%, which is higher than that of CH3NH3PbI3(~30%). The calculation of photoelectric properties of AZrSe3 and AZrTe3 shows that they are also potential optoelectronic materials. The study of AZrX3 perovskites provide a new way to search for high-efficiency lead-free optoelectronic materials.
Key words:  AZrX3 perovskites    electronic structure    optical properties    first-principles calculations
发布日期:  2023-02-08
ZTFLH:  O471.5  
基金资助: 国家自然科学基金(11474012);内蒙古自治区自然科学基金(2020MS01009)
通讯作者:  *张敏, 2010年毕业于内蒙古大学,获理学博士学位,现为内蒙古师范大学物理与电子信息学院教授,博士研究生导师。主要从事新能源材料物理特性的理论研究,重点涉及低维半导体材料在新能源领域(如:太阳能电池、光催化剂等)的结构设计与物理性能的调控计算与分析。在Nanoscale、J. Phys. Chem. C、J. Phys. D等国内外著名学术期刊上发表论文40余篇。   
作者简介:  才文文,2018年6月毕业于忻州师范学院,获得理学学士学位。现为内蒙古师范大学物理与电子信息学院硕士研究生,目前主要的研究领域是钙钛矿及反钙矿材料光电性能的第一性原理计算。
引用本文:    
才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
CAI Wenwen, HE Yong, ZHANG Min, SHI Junjie. First-principles Investigation on the Structure and Photoelectric Properties of AZrX3 (A=Ba, Ca;X=S, Se, Te) Perovskites. Materials Reports, 2023, 37(2): 21070076-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070076  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21070076
1 Abas N, Kalair A, Khan N. Futures, 2015, 69, 31.
2 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050.
3 Li J B, Duan J L, Yang X Y, et al. Nano Energy, 2021, 80, 105526.
4 Yang J L, Siempelkamp B D, Liu D Y, et al. ACS Nano, 2015, 9(2), 1955.
5 Wang Z, Shi Z J, Li T T, et al. Angewandte Chemie International Edition, 2017, 56(5), 1190.
6 Li B B, Li Y F, Zheng C Y, et al. RSC Advances, 2016, 6(44), 38079.
7 Slavney A H, Smaha R W, Smith I C, et al. Inorganic Chemistry, 2017, 56(1), 46.
8 Meng W W, Saparov B, Hong F, et al. Chemistry of Materials, 2016, 28(3), 821.
9 Yang B, Chen J S, Yang S Q, et al. Angewandte Chemie International Edition, 2018, 57(19), 5359.
10 Sanders S, Stümmler D, Pfeiffer P, et al. Scientific Reports, 2019, 9(1), 9774.
11 Chen M, Ju M G, Carl A D, et al. Joule, 2018, 2(3), 558.
12 Gu J Y, Qi P W, Peng Y. Acta Physico-Chimica Sinica, 2017, 33 (7), 1379 (in Chinese).
顾津宇, 齐朋伟, 彭扬. 物理化学学报, 2017, 33 (7), 1379.
13 Chen L, Zhang L W, Chen Y S. Acta Physica Sinica, 2018, 67(2), 028801 (in Chinese).
陈亮, 张利伟, 陈永生. 物理学报, 2018, 67(2), 028801.
14 Perera S, Hui H L, Zhao C, et al. Nano Energy, 2016, 22, 129.
15 Sun Y Y, Agiorgousis M L, Zhang P H, et al. Nano Letters, 2015, 15(1), 581.
16 Ju M G, Dai J, Ma L, et al. Advanced Energy Materials, 2017, 7(18), 1700216.
17 Oumertem M, Maouche D, Berri S, et al. Journal of Computational Electronics, 2019, 18(2), 415.
18 Kresse G, Furthmüller J. Computational Materials Science, 1996, 6(1), 15.
19 Lee M M, Teuscher J, Miyasaka T, et al. Science, 2012, 338(6170), 643.
20 Guo H W, Liu R, Wang L R, et al. Acta Physica Sinica, 2017, 66(3), 030701 (in Chinese).
郭宏伟, 刘然, 王玲瑞, 等. 物理学报, 2017, 66(3), 030701.
21 Kim H S, Lee C R, Lm J H, et al. Scientific Reports, 2012, 2(1), 591.
22 Zhao Y P, He Y, Zhang M, et al. Journal of Inorganic Materials, 2020, 35(9), 993 (in Chinese).
赵宇鹏, 贺勇, 张敏, 等. 无机材料学报, 2020, 35(9), 993.
23 Polfus J M, Norby T, Bredesen R, et al. The Journal of Physical Chemistry C, 2015, 119(42), 23875.
24 Feynman R P, Hellwarth R W, Iddings C K, et al. Physical Review, 1962, 127(4), 1004.
25 Bardeen J, Shockley W. Physical Review, 1950, 80(1), 72.
26 Sendner M, Nayak P K, Egger D A, et al. Material Horizons, 2016, 3(6), 613.
27 Yu L P, Zunger A. Physical Review Letters, 2012, 108(6), 068701.
28 Li C, Lu X G, Ding W Z, et al. Acta Crystallographica Section B, 2008, 64(6), 702.
29 Sun Q D, Yin W J. Journal of the American Chemical Society, 2017, 139(42), 14905.
30 Niu S Y, HuYan H X, Liu Y, et al. Advanced Materials, 2017, 29(9), 1604733.
31 Osei-Agyemang E, Koratkar N, Balasubramanian G. Journal of Materials Chemistry C, 2021, 9(11), 3892.
32 Zitouni H, Tahiri N, Bounagui O E, et al. Chemical Physics, 2020, 538, 110923.
33 Majumdar A, Adeleke A A, Chakraborty S, et al. Journal of Materials Chemistry C, 2020, 8(46), 16392.
34 Osei-Agyemang E, Adu C E, Balasubramanian G. Advanced Theory and Simulations, 2019, 2(9), 1900060.
35 Emery A A, Wolverton C. Scientific Data, 2017, 4(1), 170153.
36 Ganose A M, Savory C N, Scanlon D O. The Journal of Physical Chemistry Letters, 2015, 6(22), 4594.
37 Niu S Y, Milam-Guerrero J, Zhou Y C, et al. Journal of Materials Research. 2018, 33(24), 4135.
38 Li W, Zhou L J, Prezhdo O V, et al. ACS Energy Letters, 2018, 3(9), 2159.
39 Paudel T R, Tsymbal E Y. ACS Omega, 2020, 5(21), 12385.
40 Shaili H, Beraich M, Hat A E, et al. Journal of Alloys and Compounds, 2020, 851, 156790.
41 Yu Z H, Wei X C, Zheng Y X, et al. Nano Energy, 2021, 85, 105959.
42 Ming C, Yang K, Zeng H, et al. Materials Horizons, 2020, 7(11), 2985.
43 Xing G C, Mathews N, Sun S Y, et al. Science, 2013, 342(6156), 344.
44 Zhao X G, Yang D W, Sun Y H, et al. Journal of the American Chemical Society, 2017, 139(19), 6718.
[1] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[2] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[3] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[4] 徐良玉, 黄福祥, 龙敏, 邓鸿元, 陈剑. 过渡金属元素(X=Cr, Mn, Co, Ni, Zn, Zr, Nb, Ta)掺杂立方BaTiO3的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 21090275-5.
[5] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[6] 张文博, 石建丽, 马建中, 卫林峰, 范倩倩. 荧光碳量子点及其在防伪中的应用[J]. 材料导报, 2022, 36(7): 20110186-11.
[7] 关玉琴, 侯清玉, 谷玉兰. 不同价态的Mn和点空位对ZnO体系光学性能的影响[J]. 材料导报, 2022, 36(2): 20110265-7.
[8] 杨绍斌, 刘雪丽,张旭, 唐树伟. 羟基化平板孔中水合钠离子去溶剂化的第一性原理计算[J]. 材料导报, 2022, 36(1): 20110132-7.
[9] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[10] 沈潇, 魏钦华, 张伟杰, 唐高, 陈振华, 秦来顺, 史宏声. 蓝宝石表面原位玻璃化处理及性能研究[J]. 材料导报, 2021, 35(22): 22022-22026.
[11] 吴方棣, 胡家朋, 杨自涛, 郑辉东. Ag-O-N共掺杂闪锌矿ZnS光催化性质的第一性原理研究[J]. 材料导报, 2021, 35(18): 18012-18017.
[12] 解忧, 曹松, 吴秀, 于冰艺, 王素芳. 双层石墨烯掺杂Pd对CO和NO的气敏特性研究[J]. 材料导报, 2021, 35(18): 18035-18039.
[13] 刘俊男, 宋述鹏, 胡冬冬, 周和荣, 吴润. 单层WxMo1-xS2合金电子和光学性质的第一性原理研究[J]. 材料导报, 2021, 35(14): 14040-14044.
[14] 屈华, 徐巧至, 刘伟东, 齐健学, 娄琦, 蒋新宇. Al-Cu-Mg-Ag合金Ω相价电子结构与沉淀硬化能力的关系[J]. 材料导报, 2021, 35(12): 12110-12113.
[15] 方文玉, 张鹏程, 赵军. 羟基修饰单层砷烯及锑烯的电子结构与光学性质[J]. 材料导报, 2021, 35(10): 10017-10022.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed