First-principles Investigation on the Structure and Photoelectric Properties of AZrX3 (A=Ba, Ca;X=S, Se, Te) Perovskites
CAI Wenwen1, HE Yong2, ZHANG Min1,*, SHI Junjie2
1 School of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China 2 School of Physics,Peking University, Beijing 100871, China
Abstract: Considering spin-orbit coupling (SOC) effect, using Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional to correct the band gap, the structure, electronic and optical properties of AZrX3 (A=Ba, Ca;X=S, Se, Te) lead-free perovskites were systematically studied by the first-principles calculation method of density functional theory. The results show that AZrX3 perovskites are direct bandgap semiconductor materials. The tolerance factors of AZrX3 are between 0.85 and 0.95, the formation energies are between -1.09 eV/atom to -1.83 eV/atom, and the decomposition energies are between -0.09 eV and 0.06 eV, which indicates that AZrX3 have stable structures. Among them, BaZrS3 is a promi-sing solar cell material, because of its small hole effective mass (0.21 m0), high carrier mobility, wide visible light absorption range, and high light absorption coefficient (~4×105 cm-1), as well as the spectroscopic limited maximum efficiency (SLME) 32.36%, which is higher than that of CH3NH3PbI3(~30%). The calculation of photoelectric properties of AZrSe3 and AZrTe3 shows that they are also potential optoelectronic materials. The study of AZrX3 perovskites provide a new way to search for high-efficiency lead-free optoelectronic materials.
才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
CAI Wenwen, HE Yong, ZHANG Min, SHI Junjie. First-principles Investigation on the Structure and Photoelectric Properties of AZrX3 (A=Ba, Ca;X=S, Se, Te) Perovskites. Materials Reports, 2023, 37(2): 21070076-6.
1 Abas N, Kalair A, Khan N. Futures, 2015, 69, 31. 2 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050. 3 Li J B, Duan J L, Yang X Y, et al. Nano Energy, 2021, 80, 105526. 4 Yang J L, Siempelkamp B D, Liu D Y, et al. ACS Nano, 2015, 9(2), 1955. 5 Wang Z, Shi Z J, Li T T, et al. Angewandte Chemie International Edition, 2017, 56(5), 1190. 6 Li B B, Li Y F, Zheng C Y, et al. RSC Advances, 2016, 6(44), 38079. 7 Slavney A H, Smaha R W, Smith I C, et al. Inorganic Chemistry, 2017, 56(1), 46. 8 Meng W W, Saparov B, Hong F, et al. Chemistry of Materials, 2016, 28(3), 821. 9 Yang B, Chen J S, Yang S Q, et al. Angewandte Chemie International Edition, 2018, 57(19), 5359. 10 Sanders S, Stümmler D, Pfeiffer P, et al. Scientific Reports, 2019, 9(1), 9774. 11 Chen M, Ju M G, Carl A D, et al. Joule, 2018, 2(3), 558. 12 Gu J Y, Qi P W, Peng Y. Acta Physico-Chimica Sinica, 2017, 33 (7), 1379 (in Chinese). 顾津宇, 齐朋伟, 彭扬. 物理化学学报, 2017, 33 (7), 1379. 13 Chen L, Zhang L W, Chen Y S. Acta Physica Sinica, 2018, 67(2), 028801 (in Chinese). 陈亮, 张利伟, 陈永生. 物理学报, 2018, 67(2), 028801. 14 Perera S, Hui H L, Zhao C, et al. Nano Energy, 2016, 22, 129. 15 Sun Y Y, Agiorgousis M L, Zhang P H, et al. Nano Letters, 2015, 15(1), 581. 16 Ju M G, Dai J, Ma L, et al. Advanced Energy Materials, 2017, 7(18), 1700216. 17 Oumertem M, Maouche D, Berri S, et al. Journal of Computational Electronics, 2019, 18(2), 415. 18 Kresse G, Furthmüller J. Computational Materials Science, 1996, 6(1), 15. 19 Lee M M, Teuscher J, Miyasaka T, et al. Science, 2012, 338(6170), 643. 20 Guo H W, Liu R, Wang L R, et al. Acta Physica Sinica, 2017, 66(3), 030701 (in Chinese). 郭宏伟, 刘然, 王玲瑞, 等. 物理学报, 2017, 66(3), 030701. 21 Kim H S, Lee C R, Lm J H, et al. Scientific Reports, 2012, 2(1), 591. 22 Zhao Y P, He Y, Zhang M, et al. Journal of Inorganic Materials, 2020, 35(9), 993 (in Chinese). 赵宇鹏, 贺勇, 张敏, 等. 无机材料学报, 2020, 35(9), 993. 23 Polfus J M, Norby T, Bredesen R, et al. The Journal of Physical Chemistry C, 2015, 119(42), 23875. 24 Feynman R P, Hellwarth R W, Iddings C K, et al. Physical Review, 1962, 127(4), 1004. 25 Bardeen J, Shockley W. Physical Review, 1950, 80(1), 72. 26 Sendner M, Nayak P K, Egger D A, et al. Material Horizons, 2016, 3(6), 613. 27 Yu L P, Zunger A. Physical Review Letters, 2012, 108(6), 068701. 28 Li C, Lu X G, Ding W Z, et al. Acta Crystallographica Section B, 2008, 64(6), 702. 29 Sun Q D, Yin W J. Journal of the American Chemical Society, 2017, 139(42), 14905. 30 Niu S Y, HuYan H X, Liu Y, et al. Advanced Materials, 2017, 29(9), 1604733. 31 Osei-Agyemang E, Koratkar N, Balasubramanian G. Journal of Materials Chemistry C, 2021, 9(11), 3892. 32 Zitouni H, Tahiri N, Bounagui O E, et al. Chemical Physics, 2020, 538, 110923. 33 Majumdar A, Adeleke A A, Chakraborty S, et al. Journal of Materials Chemistry C, 2020, 8(46), 16392. 34 Osei-Agyemang E, Adu C E, Balasubramanian G. Advanced Theory and Simulations, 2019, 2(9), 1900060. 35 Emery A A, Wolverton C. Scientific Data, 2017, 4(1), 170153. 36 Ganose A M, Savory C N, Scanlon D O. TheJournal of Physical Chemistry Letters, 2015, 6(22), 4594. 37 Niu S Y, Milam-Guerrero J, Zhou Y C, et al. Journal of Materials Research. 2018, 33(24), 4135. 38 Li W, Zhou L J, Prezhdo O V, et al. ACS Energy Letters, 2018, 3(9), 2159. 39 Paudel T R, Tsymbal E Y. ACS Omega, 2020, 5(21), 12385. 40 Shaili H, Beraich M, Hat A E, et al. Journal of Alloys and Compounds, 2020, 851, 156790. 41 Yu Z H, Wei X C, Zheng Y X, et al. Nano Energy, 2021, 85, 105959. 42 Ming C, Yang K, Zeng H, et al. Materials Horizons, 2020, 7(11), 2985. 43 Xing G C, Mathews N, Sun S Y, et al. Science, 2013, 342(6156), 344. 44 Zhao X G, Yang D W, Sun Y H, et al. Journal of the American Chemical Society, 2017, 139(19), 6718.