Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21090090-7    https://doi.org/10.11896/cldb.21090090
  无机非金属及其复合材料 |
基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究
李贞1,2, 刘加平3,*, 乔敏1, 于诚1, 谢惟肖3, 陈俊松1
1 江苏苏博特新材料股份有限公司,高性能土木工程材料国家重点实验室,南京 211103
2 江苏省建筑科学研究院有限公司,南京 210008
3 东南大学材料科学与工程学院,南京 211189
Mechanism of Viscosity for Recycled Powder-Cement Paste Based on the Adsorption of Superplasticizer
LI Zhen1,2, LIU Jiaping3,*, QIAO Min1, YU Cheng1, XIE Weixiao3, CHEN Junsong1
1 State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
2 Jiangsu Research Institute of Building Science Co., Ltd., Nanjing 210008, China
3 School of Material Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 7421KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提升再生微粉-水泥基材料的工作性能,本工作研究了三种减水剂对再生微粉-水泥浆体流变性能的影响,通过分析再生微粉对减水剂的吸附行为、浆体颗粒堆积密实度和间隙液黏度等,揭示减水剂吸附行为对再生微粉-水泥浆体黏度的影响机制。结果表明:减水剂在再生微粉表面具有更强的吸附性,当浆体流动度接近时,羧酸基和磺酸基减水剂吸附率高于磷酸基减水剂,磷酸基减水剂使浆体获得更高的堆积密实度和间隙液黏度,两者共同影响再生微粉-水泥浆体的黏度;再生微粉取代率低时,较低的间隙液黏度使羧酸基和磺酸基减水剂再生微粉-水泥浆体的黏度更低,但是取代率高(30%)时,磷酸基减水剂对混合粉体更强的分散能力使再生微粉-水泥浆体中颗粒堆积密实度大幅度增加,浆体黏度低于其他两种减水剂浆体。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李贞
刘加平
乔敏
于诚
谢惟肖
陈俊松
关键词:  再生微粉  减水剂  剩余黏度  间隙液黏度  吸附  颗粒堆积    
Abstract: To improve the workability of cement-based material with recycled powder(RP), the effect of superplasticizers on the rheological properties of RP-cement paste was investigated. Meanwhile, the adsorption behavior of superplasticizers in paste, the packing density and the viscosity of interstitial solution were analyzed to reveal the adsorption on the viscosity of paste with RP. The results show that superplasticizers has a stronger adsorption ability on the RP surfaces with the similar flow spread of paste, especially for the carboxylic-superplasticizer and sulfonic-superplasticizer. Whereas, a higher packing density and viscosity of interstitial solution can be obtained for the paste with the addition of phosphonic-superplasticsizer, which will affect the viscosity of cement paste with RP together. Due to a lower viscosity of the interstitial solutions of carboxylic-superplasticizer and sulfonic-superplasticizer, the viscosity of cement paste with a low substitution rate of RP is lower than that of paste with phosphonic-superplasticsizer. However, with a high substitution rate of 30%, the well dispersion of mix particles with the help of phosphonic-superplasticizer can result in an increased packing density, thus leading to a lower viscosity of cement paste with RP, compared to that of paste with other superplasticizers.
Key words:  recycled powder    superplasticizer    residual viscosity    viscosity of interstitial solution    adsorption    packing density
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TU528  
基金资助: 国家重点研发计划 (2020YFC1909900);国家自然科学基金青年基金(52008190)
通讯作者:  *刘加平,东南大学材料科学与工程学院教授。1995年获东南大学材料科学与工程硕士学位,2008年获南京工业大学材料学博士学位。长期从事现代混凝土的流变性调控、收缩与裂缝控制和耐久性提升技术的研究,先后完成了包括“973”项目、国家自然科学基金和“十一五、十二五”国家科技支撑计划项目在内的各类科研课题30余项。以第一作者/通信作者在国内外学术期刊上发表SCI/EI收录论文250余篇。liujiaping@cnjsjk.cn   
作者简介:  李贞,博士,工程师。2020年1月毕业于东南大学,获材料科学与工程博士学位。同年加入江苏苏博特新材料股份有限公司研究院工作至今,主持和参与国家自然科学基金青年项目和国家重点研发计划等多个项目,主要从事固体废弃物的资源化利用和混凝土制品技术研究。以第一作者在Cement and Cement Composites、Cement and Building Materials、《建筑结构学报》等国内外学术期刊上发表论文10余篇。
引用本文:    
李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
LI Zhen, LIU Jiaping, QIAO Min, YU Cheng, XIE Weixiao, CHEN Junsong. Mechanism of Viscosity for Recycled Powder-Cement Paste Based on the Adsorption of Superplasticizer. Materials Reports, 2023, 37(8): 21090090-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090090  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21090090
1 Xiao J, Li W, Fan Y, et al. Construction & Building Materials, 2012, 31(2),364.
2 Ravindrarajah R S, Loo Y H, Tam C T. Magazine of Concrete Research, 1987,39(141),214.
3 ACI Committee 555. ACI Materials Journal, 2002, 99(3), 300.
4 Li X. Resources Conservation Recycling, 2008,53(1),36.
5 Beltrán M G, Barbudo A, Agrela F, et al. Journal of Cleaner Production, 2014, 79(9),124.
6 Abbas A, Fathifazl G, Isgor O B, et al. Cement & Concrete Composites, 2009,31(2),555.
7 Pereira-de-Oliveira L A, Castro-Gomes J P, Santos P M S. Construction and Building Materials, 2012, 31(6),197.
8 Liu Q, Teng T, Liu S, et al. Construction and Building Materials, 2014, 73(12),754.
9 Gastaldi D, Canonico F, Capelli L, et al. Cement & Concrete Composites, 2015, 61(4),29.
10 Lyu X Y, Wang L S, Chen X, et al. Journal of Qingdao Technological University, 2009, 30(4),137(in Chinese).
吕雪源, 王乐生, 陈雪, 等.青岛理工大学学报, 2009, 30(4),137.
11 Huang X L, Bian Z H, Huang S L, et al. Concrete, 2017(8),128(in Chinese)
黄修林, 卞周宏, 黄绍龙, 等. 混凝土, 2017(8),128.
12 Ma X W, Wang Z Y. Advances in Materials Science and Engineering, 2013, 2013(2),332.
13 Kim Y J, Choi Y W. Construction and Building Materials, 2012, 30(5),500.
14 Yoshioka K, Tazawa E, Kawai K, et al. Cement and Concrete Research, 2002, 32(10),1507.
15 Atarashi D, Sakai E, Obinata R, et al. Cement Science and Concrete Technology, 2003, 57(2),386.
16 Atarashi D, Sakai E, Daimon M. Cement & Concrete, 2005, 59, 654.
17 Sakai E, Atarashi D, Daimon M. In: 6th International Symposium on Cement and Concrete, CANMET/ACI International Symposium on Concrete Technology for Sustainable Development. Xi'an, China, 2006, pp. 1560.
18 Schrofl C, Gruber M, Plank J. Cement and Concrete Research, 2012, 42(11),1401.
19 Yoshioka K, Tazawa E, Kawai K, et al. Cement and Concrete Research, 2002, 32(10), 1507.
20 Cheng X. Effect of raw material on application performances of superplasticizer. Master's Thesis, Beijing University of Technology, China, 2010(in Chinese).
程勋. 混凝土原材料对聚羧酸减水剂应用性能的影响. 硕士学位论文, 北京工业大学, 2010.
21 DeLarrad F. In: Concrete constituents: relevant parameters, DeLarrard F. ed.,Concrete Mixture Proportioning: A Scientific, CRC Press, London, 1999, pp. 222.
22 Lange A, Hirata T, Plank J. ACI Special Publication, 2012, 288(1), 435.
23 Liu J, Wang K, Zhang Q, et al. Construction and Building Materials, 2017, 149(5), 359.
24 Struble L, Sun G K. Advanced Cement Based Materials, 1995, 2(2),62.
25 Hot J, Bessaies-Bey H, Brumaud C, et al. Cement and Concrete Research, 2014, 63(9),12.
[1] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[2] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[3] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[4] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[5] 宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 21070249-7.
[6] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[7] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[8] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[9] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[10] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[11] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[12] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[13] 刘利, 诸力维, 彭喜林, 周洋, 张楷彬, 孙浩荻, 李晓林. 污水中非正磷酸盐处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22050093-5.
[14] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[15] 吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed