Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 23120234-6    https://doi.org/10.11896/cldb.23120234
  金属与金属基复合材料 |
AlMg/6082异种铝合金脉冲MIG焊缝微观组织特征和力学性能
李佳1,2,*, 黄利3, 冉启洪4, 高峰4
1 重庆交通大学机电与车辆工程学院,重庆 400074
2 重庆工业职业技术学院电气工程学院,重庆 401122
3 中国汽车工程研究院股份有限公司部件与材料测试中心,重庆 401120
4 重庆长安汽车股份有限公司,重庆 400023
Microstructure and Mechanical Properties of Pulse MIG Welded Joint of AlMg/6082 Dissimilar Aluminum Alloy
LI Jia1,2,*, HUANG Li3, RAN Qihong4, GAO Feng4
1 Department of Mechatronics and Vehicle Engineering Chongqing Jiaotong University, Chongqing 400074, China
2 Department of Electrical Engineering, Chongqing Industry Polytechnic College, Chongqing 401122, China
3 China Automotive Engineering Research Institute Co., Ltd., Chongqing 401120, China
4 Chongqing Changan Automobile Co., Ltd., Chongqing 400023, China
下载:  全 文 ( PDF ) ( 31954KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用脉冲MIG焊技术连接AlMg铸铝与6082-T6铝合金型材,研究异种铝合金接头力学性能、各区域晶粒形貌、断口形貌,分析微观组织的演化对力学性能的影响规律。结果表明:6082/AlMg异种铝合金 MIG 焊焊接接头拉伸最大载荷为3 235 N,承载为AlMg母材的85.5%,伸长率为8.2%,焊接系数约为 0.8;接头断裂于AlMg母材中,呈现韧性断裂。在AlMg侧热影响区,显微硬度最低值77HV,较AlMg母材显微硬度下降仅7%,无明显软化现象,对焊接瞬时热冲击敏感性较低;而6082-T6侧热影响区软化现象明显,硬度相对母材下降32%,该软化区的形成在于β"相数量密度的降低以及强化效果较差、尺寸较大的β′相的生成。在焊接过程中,焊缝区熔池快速冷却,溶质分布不均衡,形成典型等轴晶铸态组织;受到焊接瞬时热冲击的影响,接头两侧热影响区晶粒呈现不同程度长大,其中AlMg近焊缝侧晶粒较母材晶粒尺寸长大42.8%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李佳
黄利
冉启洪
高峰
关键词:  AlMg铸铝  MIG焊  6082-T6  异种焊接    
Abstract: The joining between AlMg cast aluminum and 6082-T6 aluminum alloy was conducted with pulse MIG welding technology. The mechanical properties, grain morphology, and fracture morphology of dissimilar aluminum alloy joints between AlMg cast aluminum and 6082-T6 aluminum alloy profiles were studied. The influence of microstructural evolution on mechanical properties was analyzed. The results shows that the maximum tensile load of the 6082/AlMg welded joint is up to 3 235 N, up to 85.5% of the load-bearing capacity of AlMg base material. The elongation is 8.2%, and the welding coefficient is approximately 0.8. The joints breaks in the AlMg base material and shows a ductile fracture. In the heat-affected zone on AlMg side, the lowest microhardness value is 77HV, with only a 7% decrease compared to the AlMg base metal. There is no significant softening observed, indicating a low sensitivity to the welding thermal cycle. However, the heat-affected zone of 6082-T6 side exhibits significant softening, with a 32% decrease in hardness relative to the base metal. This softening is attributed to the reduced density of β″ precipitates and the formation of larger β′ precipitates, which provided weaker strengthening effects. The weld zone, undergoes rapid cooling during welding, has an equiaxed dendritic cast structure with uneven solute distribution. Under the influence of the welding thermal cycle, the heat-affected zone on both sides of the joint shows varying degrees of grain growth. The AlMg side near the weld zone exhibits a 42.8% increase in grain size compared to the base metal.
Key words:  AlMg cast aluminium    MIG    6082-T6    dissimilar materials welding
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TQ457  
基金资助: 重庆市教委科学技术研究项目(KJQN202203205)
通讯作者:  *李佳,博士,重庆工业职业技术学院专任教师、高级工程师。目前主要从事汽车车身装配与连接技术、新型轻量化材料连接技术等方面的研究工作。810934362@qq.com   
引用本文:    
李佳, 黄利, 冉启洪, 高峰. AlMg/6082异种铝合金脉冲MIG焊缝微观组织特征和力学性能[J]. 材料导报, 2025, 39(10): 23120234-6.
LI Jia, HUANG Li, RAN Qihong, GAO Feng. Microstructure and Mechanical Properties of Pulse MIG Welded Joint of AlMg/6082 Dissimilar Aluminum Alloy. Materials Reports, 2025, 39(10): 23120234-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120234  或          https://www.mater-rep.com/CN/Y2025/V39/I10/23120234
1 Morita A. In:International Conference on Aluminum Alloys (ICAA6). Toyo hashi:Japan Institute of Light Metals, 1998, pp.25
2 Haber D. In:24th Sae Brasil International Congress & Display. SAE International by Univ of California Berkeley, 2015, pp.36.
3 Abdullah A, Mohammed S K, Takhakh A M. Advances in Material Science and Manufacturing Engineering, DOI:10.1063/5.0117786.
4 Zhang L L, Wang X J, Liu X. Journal of Materials Engineering, 2018, 46(10), 55 (in Chinese).
张亮亮, 王希靖, 刘骁. 材料工程, 2018, 46(10), 55.
5 Zhang W K. Research on the mechanisms of thermal softening and strength recovery in fusion welded 6082-T6 alloy butt. Master’s Thesis, Hunan university, China, 2023 (in Chinese).
张文康. 6082-T6铝合金熔化焊接头热软化及焊后时效恢复机理研究. 硕士学位论文, 湖南大学, 2020.
6 Yang J, Oliveira J P, Li Y, et al. Journal of Materials Processing Technology, 2022, 301, 117443.
7 Qiao J Y, Shao Y F, Ruan Y, et al. Materials Reports, 2016, 24(24), 94 (in Chinese).
乔建毅, 邵有发, 阮野, 等. 材料导报, 2016, 24(24), 94.
8 Hu J Y, Liu Z Y, Li P Y, et al. Hot Working Technology, 2018, 47(19), 3 (in Chinese).
胡靖元, 刘志颖, 李培跃, 等. 热加工工艺, 2018, 47(19), 3.
9 Kang M, Sun W, Jiang P W. Nonferrous Metals Processing, 2020, 49(3), 23 (in Chinese).
康铭, 孙巍, 姜丕文. 有色金属加工, 2020, 49(3), 23.
10 Gao Q, Bai F, Ding H S, et al. Materials Reports, 2017, 31(11), 80 (in Chinese).
高倩, 白芳, 丁红胜, 等. 材料导报, 2017, 31(11), 80.
11 Ministry of Industry and Information Technology of the People’s Republic of China. Heat treatment of wrought aluminium and aluminium alloys:YS/T 591-2017, Standards Press of China, China, 2017( in Chinese).
中华人民共和国工业和信息化部. 变形铝及铝合金热处理规范:YS/T 591-2017, 中国标准出版社. 2017.
12 Granholt J D D A. Precipitate structure changes during overaging in an Al-Mg-Si alloy. Master’s Thesis, Norwegian University of Science and Technology, Norway, 2012.
13 Marioara C D, Andersen S J, Jansen J, et al. Acta Materialia, 2001, 49(2), 321.
14 Andersen S J, Zandbergen H W, Jansen J, et al. Acta Materialia, 2007, 46(2), 3283.
15 Yi J. The study of mechanical property and microstructure evolution of Al alloy weld in double-pulsed MIG welding. Master’s Thesis, Hunan university, China, 2015(in Chinese).
易杰. 铝合金双脉冲MIG焊接过程中焊缝组织和性能研究. 硕士学位论文, 湖南大学, 2015.
16 Wang P J, Chen K H, Jiang H L, et al. Materials Science and Engineering of Powder Metallurgy, 2016, 21(6), 8 (in Chinese).
王培吉, 陈康华, 姜慧丽, 等. 粉末冶金材料科学与工程, 2016, 21(6), 8.
17 Peng X Y, Cao X W, Duan Y L. The Chinese Journal of Nonferrous Metals, 2014, 24(4), 7 (in Chinese).
彭小燕, 曹晓武, 段雨露. 中国有色金属学报, 2014, 24(4), 7.
18 Ares A E, Gueijman S F, Caram R, et al. Journal of Crystal Growth, 2005, 275(1-2), 319.
19 Dubzik K. Journal of Kones Powertrain and Transport, 2010, 17(4), 137.
20 Huis M A V, Chen J H, Sluiter M H F, et al. Acta Materialia, 2007, 55(6), 2183.
21 He H, Li S K, Zhang L, et al. Journal of Plasticity Engineering, 2018, 25(1), 6(in Chinese).
何洪, 李世康, 张龙, 等. 塑性工程学报, 2018, 25(1), 6.
[1] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[2] 乔建毅,王文权,阮野,郭成伟. 环境温湿度对铝合金焊缝气孔和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 254-258.
[3] 王希靖, 魏学玲, 张亮亮. 焊后时效处理对6082-T6铝合金搅拌摩擦焊接头的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 62-65.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed